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What’s the goal?

▪ From 1st principles, derivate a blockchain architecture which has…
▪ Programmable smart contracts with private state as a 

first-class primitive
▪ Transactions are end-to-end encrypted
▪ No trusted 3rd parties or hardware, only math!
▪ Preserve traditional smart contract semantics

▪ contracts can “call” other contracts
▪ accessible to non-cryptographers
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Prior work and influences

3

▪ (2015) Zerocoin paper, ZCash

▪ (2018) ZEXE

▪ (2020) Mina protocol

▪ …and over 40 years of zk research!
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“Choose your SNARK/STARK”
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▪ We need…
▪ fast Prover w. minimal resources

▪ fast arbitrary-depth recursive proof composition
▪ => small proof sizes

▪ Sumcheck IOP + KZG commitment scheme fits the 
bill (e.g. Hyperplonk, Honk (TBD))
▪ Recursion via Halo2-style curve cycles
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What is a blockchain?
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What is a private state machine?

What even is a state machine?
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Private state (⅓)

▪ State must be encrypted
▪ Owner od decryption key “owns” the state

▪ State tree == Merkle tree of encrypted state, but…
▪ Modifying/deleting entry leaks information!

▪ => Merkle trees must be append only

▪ …how do we update state once it’s created?
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Private state (2/3)

▪ State is deleted via Nullifiers and a nullifier set

▪ Nullifier = encryption of encrypted state!
▪ Cannot link nullifier to state w/o decryption key

▪ State is deleted by adding nullifier to nullifier set

▪ State is live iff nullifier does not exist in nullifier set

Private state has an inherent UTXO structure
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Private state (3/3)
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data = “we hold these truths to be self-evident”
owner = bfnklyn.eth

UTXO = Enc(data, owner, owner.sk) Nullifier = Enc(UTXO, owner.sk)
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Q: Is private UTXO state sufficient?

Can we re-create existing 
blockchain apps?
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No! We have PROBLEMS…
▪ Race conditions

▪ 1 UTXO cannot be modified twice in 1 block
▪ Ownership requirement

▪ Cannot perform deterministic state updates w/o 
decryption keye

▪ e.g. forced collateral liquidations
▪ Need UTXO private state *and* account-model 

public state
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The road to a private + public state machine

▪ Private state transitions
▪ require user-generated proofs of correctness

▪ Public state transitions
▪ ordered + executed sequentially by 3rd party e.g.

▪ Miner (Eth 1)

▪ Validator (Eth 2)

▪ Sequencer (L2)
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Creating a Smart Contract with 
private + public state
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Time-ordering of state transitions

▪ (user submits proof of private state transitions
▪ User tx consists of:

▪ proof of private state transition algorithm
▪ instruction to execute public state transition algorithm

▪ Private state transitions happen before public state 
transitions
▪ How do we present semantics that express this?
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Smart contracts for private blockchains

▪ Contract composed of public functions and private 
functions
▪ Private functions

▪ Can update UTXO tree
▪ Can update nullifier set
▪ Can read from historical public state
▪ Can unilaterally call public functions (no return 

params)

15



ZKP MOOC

Contract composed of private and public functions

Private functions Public functions
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▪ Can update UTXO tree

▪ Can update nullifier set

▪ Can read from historical public state

▪ Can unilaterally call public functions 
(no return params)

▪ Can update UTXO tree

▪ Can update nullifier set

▪ Can read/write public state
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Protocol representation of smart contracts

▪ Functions defined by ZK SNARK verification keys
▪ “Contract” defined by set of function verification keys

▪ Public inputs of ZK SNARK circuit conforms to a 
uniform ABI
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Smart contract ABI example
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Public input range Purpose
0-9 Function argument parameters 

10 UTXO tree state root

11 Nullifier tree state root

12 Public tree state root

13 msg.sender (encrypted)

10-19 UTXO leaves to add

20-29 Nullifier leaves to add

30-39 Event parameters
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Executing private functions

▪ Private functions must be executed client-side to 
avoid leaking information
▪ Require proof of correctness of sequence of private 

function calls
▪ …what if a private function calls a function from a 

different contract?
We need call semantics!
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The Private Kernel Circuit
or how I learned to stop worrying and love recursion
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What is a “kernel” in general software terms?
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▪ A software layer between user code and the CPU & 
hardware
▪ Enforces code execution rules and chooses which app 

runs next on the CPU
▪ Manages resource access and allows cross-app 

communication
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What is a “kernel” in a ZK SNARK?
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▪ A circuit layer between user code (e.g. Noir 
“contract”) and the protocol execution layer (e.g. L2 
rollup)
▪ Enforces code deployment and execution rules
▪ Manages access to data and functions from within a 

contract
▪ Maintains privacy of some information
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Why do we need a Private Kernel Circuit? (⅓)
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▪ Privacy
▪ Authenticate user w/o revealing identity
▪ Hide contract being called

▪ Composability
▪ Functions should be able to call functions of other 

contracts
▪ Every contract function is its own circuit && generates 

own proofs
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Why do we need a Private Kernel Circuit? (⅔)
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▪ One TX can contain multiple proofs (1 per function)
▪ e.g. User calls A.foo(), A.foo() calls B.bar(0 etc
▪ A.foo(), B.bar() each represented by a circuit + proof
▪ Who combines them and how?
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Why do we need a Private Kernel Circuit? (3/3)
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▪ Combining function proofs 
requires privacy
▪ What if a.foo() -> b.bar() 

passes sensitive information?
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High-level recap of Private Kernel (½)

▪ A circuit that validates the correct execution of ONE 
private function call
▪ Circuit structure is recursive
▪ A sequence of private function calls can be executed 

via iteratively computing kernel circuit proofs

Can unwind recursion into 1 layer but will leak info
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High-level recap of Private Kernel (2/2)

▪ User generates proof
▪ Preserves privacy of

▪ user (tx.origin)
▪ (nested) function args and return values
▪ state reads
▪ the function itself

▪ User submits a single proof for full execution of 
private function callstack
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For each function call in the callstack..

▪ Prove the following
▪ signed TX request matches first call in callstack
▪ function exists in function tree
▪ contract exists in contract tree
▪ commitments referenced by function are in data tree

▪ Collect new commitments, nullifiers, contracts
▪ Verify previous kernel proof
▪ Verify proof for current function being processed
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Inputs to the Private Kernel

▪ SignedTxRequest
▪ Original request from user to call 1st function in the stack

▪ PreviousKernelData
▪ Kernel is recursive! Accumulated data from previous iterations

▪ PrivateCallData
▪ Data relevant to function call being processed
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Kernel recursion
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Kernel recursion through callstack
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Private kernel circuit architecture
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Kernel Circuit does not:
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▪ Execute function circuits themselves
▪ Done prior to the kernel

▪ Perform tree insertions
▪ Commitments, nullifiers etc…
▪ This is done in a “rollup” circuit by Sequencer/Prover

▪ Merge multiple separate TXs
▪ Sequencer/prover aggregates TXs in a “rollup” circuit
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The Public Kernel Circuit:
public function execution
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State of a tx in the public mempool

▪ ZK Proof of private kernel
▪ private callstack must be empty
▪ public callstack contains functions to be executed

▪ Public function execution must be validated via a 
public kernel circuit

▪ Public kernel proofs generated via Sequencer/Prover

35



ZKP MOOC

Computing proofs of public functions

▪ Public function proofs computed by 3rd party 
sequencer/prover

▪ Function proofs wrapped in a public kernel circuit

▪ One significant complication:

▪ Sequencer must be fairly compensated for the work 
they perform
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User/Sequencer trust problem

▪ A function proof can be invalid from 2 causes:
▪ Choice of public inputs creates unsatisfiable 

constraints (i.e. transaction throws an error)
▪ Witness assignment is deliberately invalid

▪ For public functions…
▪ 1st failure case caused by tx sender
▪ 2nd failure case caused by sequencer
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Public functions require a VM!

▪ A valid tx requires the VM proof to be valid
▪ i.e. sequencer can’t grief a user

▪ A valid VM proof can return execution result as a 
public input
▪ i.e. user cannot force sequencer to do unpaid work
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How do Virtual 
Machines Work?
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CPU Architectures: high-level 

▪ Opcode: part of CPU instruction set: 

treated as atomic operation

▪ Microcode: Opcodes split into 

micro-opcodes. 1 clock cycle performs 1 

microcode operation

▪ Registers store data being worked on

▪ RAM stores remaining data

▪ Arithmetic instructions executed by 

“Arithmetic Logic Unit” 
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How does a SNARK 
VM Work?
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Runtime columns (committed to by Prover)

Runtime lookup table (committed to by Prover)

Program-specific lookup table (precomputed)

VM lookup table (precomputed)

PC (Program Counter)
OP (Opcode) Registers Gate Selectors Memory Table

MC (Microcode)

1 Column = 1 Polynomial Commitment
1 Row = 1 Gate 

Selector Lookups
Opcode Lookups

TP

C

TO

P

TM

C
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PC (Program Counter)
OP (Opcode) Registers Gate Selectors Memory Table

Selector Lookups
Opcode Lookups

MC (Microcode) TP

C

TO

P

TM

C

1 Column = 1 Polynomial Commitment
1 Row = 1 Gate 

OP, MC read from Opcode Lookup table (indexed by PC)

Gate Selectors read from Selector Lookup table (indexed by OP, MC)

Registers, PC values dependent on Gate Selectors
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Opcode Num Microcode Ops Gate Expression Technique

Add 1 R1i+1 = R1i + R2i Custom gate

MOV [R1] 1 R1i+1= M[R1i] Lookup

XOR R1 [R2] 1 R1i+1= R1 ^ M[R2i] Custom gate + Lookup

SHA256 3,000 M[R1i] = SHA256(M[R2i]) 3,000 gates + lookups!

JUMPI X 1 PCi+1 = (R1i == 0) ? PCi + 1 : X Custom gate

Example SNARK VM Opcodes
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Rollup Circuit: 
Aggregating txs
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Why do we need a rollup?

▪ Validation of a block of txns is expensive due to 
verifier costs!
▪ Ideal if consensus layer only needs to validate proof 

of block correctness
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Base Rollup Circuit
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Merge Rollup Circuit

48



ZKP MOOC

Rolling Up
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Public kernel proofs

▪ We roll 2 
proofs/circuit

▪ Small circuit sizes = 
fast proofs

▪ Helps decentralization
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Root Rollup Circuit
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▪ Recursively “devolve” proof systems to reduce vinyl verification cost
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Putting it all together
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Recap (1 / 2)

▪ 3 State trees (private state, public state, contract state)

▪ 1 Nullifier set (private state)

▪ Contracts defined via set of verification keys for 
private/public functions
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Recap (2 / 2)

▪ Private kernel circuit validates private function 
execution

▪ Public kernel circuit validates public function 
execution + private kernel proof

▪ Rollup circuit validates public kernel proof + performs 
state updates

▪ Root rollup circuit validates rollup proof using SNARK 
protocol w. low verification costs 
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