
Zero Knowledge Proofs
Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

Privacy-Preserving Smart Contract Architectures

Guest Lecturer: Zac Williamson, AZTEC



ZKP MOOC

What’s the goal?

▪ From 1st principles, derivate a blockchain architecture which has…
▪ Programmable smart contracts with private state as a 

first-class primitive
▪ Transactions are end-to-end encrypted
▪ No trusted 3rd parties or hardware, only math!
▪ Preserve traditional smart contract semantics

▪ contracts can “call” other contracts
▪ accessible to non-cryptographers

2



ZKP MOOC

Prior work and influences

3

▪ (2015) Zerocoin paper, ZCash

▪ (2018) ZEXE

▪ (2020) Mina protocol

▪ …and over 40 years of zk research!



ZKP MOOC

“Choose your SNARK/STARK”

4

▪ We need…
▪ fast Prover w. minimal resources

▪ fast arbitrary-depth recursive proof composition
▪ => small proof sizes

▪ Sumcheck IOP + KZG commitment scheme fits the 
bill (e.g. Hyperplonk, Honk (TBD))
▪ Recursion via Halo2-style curve cycles



Credit: Faithie/Shutterstock

ZKP MOOC

What is a blockchain?

5



Credit: Faithie/Shutterstock

ZKP MOOC

What is a private state machine?

What even is a state machine?

6



ZKP MOOC

Private state (⅓)

▪ State must be encrypted
▪ Owner od decryption key “owns” the state

▪ State tree == Merkle tree of encrypted state, but…
▪ Modifying/deleting entry leaks information!

▪ => Merkle trees must be append only

▪ …how do we update state once it’s created?

7



ZKP MOOC

Private state (2/3)

▪ State is deleted via Nullifiers and a nullifier set

▪ Nullifier = encryption of encrypted state!
▪ Cannot link nullifier to state w/o decryption key

▪ State is deleted by adding nullifier to nullifier set

▪ State is live iff nullifier does not exist in nullifier set

Private state has an inherent UTXO structure

8



ZKP MOOC

Private state (3/3)

9

data = “we hold these truths to be self-evident”
owner = bfnklyn.eth

UTXO = Enc(data, owner, owner.sk) Nullifier = Enc(UTXO, owner.sk)



Credit: Faithie/Shutterstock

ZKP MOOC

Q: Is private UTXO state sufficient?

Can we re-create existing 
blockchain apps?

10



ZKP MOOC

No! We have PROBLEMS…
▪ Race conditions

▪ 1 UTXO cannot be modified twice in 1 block
▪ Ownership requirement

▪ Cannot perform deterministic state updates w/o 
decryption keye

▪ e.g. forced collateral liquidations
▪ Need UTXO private state *and* account-model 

public state

11



ZKP MOOC

The road to a private + public state machine

▪ Private state transitions
▪ require user-generated proofs of correctness

▪ Public state transitions
▪ ordered + executed sequentially by 3rd party e.g.

▪ Miner (Eth 1)

▪ Validator (Eth 2)

▪ Sequencer (L2)

12



Credit: Faithie/Shutterstock

ZKP MOOC

Creating a Smart Contract with 
private + public state

13



ZKP MOOC

Time-ordering of state transitions

▪ (user submits proof of private state transitions
▪ User tx consists of:

▪ proof of private state transition algorithm
▪ instruction to execute public state transition algorithm

▪ Private state transitions happen before public state 
transitions
▪ How do we present semantics that express this?

14



ZKP MOOC

Smart contracts for private blockchains

▪ Contract composed of public functions and private 
functions
▪ Private functions

▪ Can update UTXO tree
▪ Can update nullifier set
▪ Can read from historical public state
▪ Can unilaterally call public functions (no return 

params)

15



ZKP MOOC

Contract composed of private and public functions

Private functions Public functions

16

▪ Can update UTXO tree

▪ Can update nullifier set

▪ Can read from historical public state

▪ Can unilaterally call public functions 
(no return params)

▪ Can update UTXO tree

▪ Can update nullifier set

▪ Can read/write public state



ZKP MOOC

Protocol representation of smart contracts

▪ Functions defined by ZK SNARK verification keys
▪ “Contract” defined by set of function verification keys

▪ Public inputs of ZK SNARK circuit conforms to a 
uniform ABI

17



ZKP MOOC

Smart contract ABI example

18

Public input range Purpose
0-9 Function argument parameters 

10 UTXO tree state root

11 Nullifier tree state root

12 Public tree state root

13 msg.sender (encrypted)

10-19 UTXO leaves to add

20-29 Nullifier leaves to add

30-39 Event parameters



ZKP MOOC

Executing private functions

▪ Private functions must be executed client-side to 
avoid leaking information
▪ Require proof of correctness of sequence of private 

function calls
▪ …what if a private function calls a function from a 

different contract?
We need call semantics!

19



Credit: Faithie/Shutterstock

ZKP MOOC

The Private Kernel Circuit
or how I learned to stop worrying and love recursion

20



ZKP MOOC

What is a “kernel” in general software terms?

21

▪ A software layer between user code and the CPU & 
hardware
▪ Enforces code execution rules and chooses which app 

runs next on the CPU
▪ Manages resource access and allows cross-app 

communication



ZKP MOOC

What is a “kernel” in a ZK SNARK?

22

▪ A circuit layer between user code (e.g. Noir 
“contract”) and the protocol execution layer (e.g. L2 
rollup)
▪ Enforces code deployment and execution rules
▪ Manages access to data and functions from within a 

contract
▪ Maintains privacy of some information



ZKP MOOC

Why do we need a Private Kernel Circuit? (⅓)

23

▪ Privacy
▪ Authenticate user w/o revealing identity
▪ Hide contract being called

▪ Composability
▪ Functions should be able to call functions of other 

contracts
▪ Every contract function is its own circuit && generates 

own proofs



ZKP MOOC

Why do we need a Private Kernel Circuit? (⅔)

24

▪ One TX can contain multiple proofs (1 per function)
▪ e.g. User calls A.foo(), A.foo() calls B.bar(0 etc
▪ A.foo(), B.bar() each represented by a circuit + proof
▪ Who combines them and how?



ZKP MOOC

Why do we need a Private Kernel Circuit? (3/3)

25

▪ Combining function proofs 
requires privacy
▪ What if a.foo() -> b.bar() 

passes sensitive information?



ZKP MOOC

High-level recap of Private Kernel (½)

▪ A circuit that validates the correct execution of ONE 
private function call
▪ Circuit structure is recursive
▪ A sequence of private function calls can be executed 

via iteratively computing kernel circuit proofs

Can unwind recursion into 1 layer but will leak info

26



ZKP MOOC

High-level recap of Private Kernel (2/2)

▪ User generates proof
▪ Preserves privacy of

▪ user (tx.origin)
▪ (nested) function args and return values
▪ state reads
▪ the function itself

▪ User submits a single proof for full execution of 
private function callstack

27



ZKP MOOC

For each function call in the callstack..

▪ Prove the following
▪ signed TX request matches first call in callstack
▪ function exists in function tree
▪ contract exists in contract tree
▪ commitments referenced by function are in data tree

▪ Collect new commitments, nullifiers, contracts
▪ Verify previous kernel proof
▪ Verify proof for current function being processed

28



ZKP MOOC

Inputs to the Private Kernel

▪ SignedTxRequest
▪ Original request from user to call 1st function in the stack

▪ PreviousKernelData
▪ Kernel is recursive! Accumulated data from previous iterations

▪ PrivateCallData
▪ Data relevant to function call being processed

29



ZKP MOOC

Kernel recursion

30



ZKP MOOC

Kernel recursion through callstack

31



ZKP MOOC

Private kernel circuit architecture

32



ZKP MOOC

Kernel Circuit does not:

33

▪ Execute function circuits themselves
▪ Done prior to the kernel

▪ Perform tree insertions
▪ Commitments, nullifiers etc…
▪ This is done in a “rollup” circuit by Sequencer/Prover

▪ Merge multiple separate TXs
▪ Sequencer/prover aggregates TXs in a “rollup” circuit



Credit: Faithie/Shutterstock

ZKP MOOC

The Public Kernel Circuit:
public function execution

34



ZKP MOOC

State of a tx in the public mempool

▪ ZK Proof of private kernel
▪ private callstack must be empty
▪ public callstack contains functions to be executed

▪ Public function execution must be validated via a 
public kernel circuit

▪ Public kernel proofs generated via Sequencer/Prover

35



ZKP MOOC

Computing proofs of public functions

▪ Public function proofs computed by 3rd party 
sequencer/prover

▪ Function proofs wrapped in a public kernel circuit

▪ One significant complication:

▪ Sequencer must be fairly compensated for the work 
they perform

36



ZKP MOOC

User/Sequencer trust problem

▪ A function proof can be invalid from 2 causes:
▪ Choice of public inputs creates unsatisfiable 

constraints (i.e. transaction throws an error)
▪ Witness assignment is deliberately invalid

▪ For public functions…
▪ 1st failure case caused by tx sender
▪ 2nd failure case caused by sequencer

37



ZKP MOOC

Public functions require a VM!

▪ A valid tx requires the VM proof to be valid
▪ i.e. sequencer can’t grief a user

▪ A valid VM proof can return execution result as a 
public input
▪ i.e. user cannot force sequencer to do unpaid work

38



Credit: Faithie/Shutterstock

ZKP MOOC

How do Virtual 
Machines Work?

39



ZKP MOOC

CPU Architectures: high-level 

▪ Opcode: part of CPU instruction set: 

treated as atomic operation

▪ Microcode: Opcodes split into 

micro-opcodes. 1 clock cycle performs 1 

microcode operation

▪ Registers store data being worked on

▪ RAM stores remaining data

▪ Arithmetic instructions executed by 

“Arithmetic Logic Unit” 

40



Credit: Faithie/Shutterstock

ZKP MOOC

How does a SNARK 
VM Work?

41



ZKP MOOC42
42

Runtime columns (committed to by Prover)

Runtime lookup table (committed to by Prover)

Program-specific lookup table (precomputed)

VM lookup table (precomputed)

PC (Program Counter)
OP (Opcode) Registers Gate Selectors Memory Table

MC (Microcode)

1 Column = 1 Polynomial Commitment
1 Row = 1 Gate 

Selector Lookups
Opcode Lookups

TP

C

TO

P

TM

C



ZKP MOOC43
43

PC (Program Counter)
OP (Opcode) Registers Gate Selectors Memory Table

Selector Lookups
Opcode Lookups

MC (Microcode) TP

C

TO

P

TM

C

1 Column = 1 Polynomial Commitment
1 Row = 1 Gate 

OP, MC read from Opcode Lookup table (indexed by PC)

Gate Selectors read from Selector Lookup table (indexed by OP, MC)

Registers, PC values dependent on Gate Selectors



ZKP MOOC44
44

Opcode Num Microcode Ops Gate Expression Technique

Add 1 R1i+1 = R1i + R2i Custom gate

MOV [R1] 1 R1i+1= M[R1i] Lookup

XOR R1 [R2] 1 R1i+1= R1 ^ M[R2i] Custom gate + Lookup

SHA256 3,000 M[R1i] = SHA256(M[R2i]) 3,000 gates + lookups!

JUMPI X 1 PCi+1 = (R1i == 0) ? PCi + 1 : X Custom gate

Example SNARK VM Opcodes



Credit: Faithie/Shutterstock

ZKP MOOC

Rollup Circuit: 
Aggregating txs

45



ZKP MOOC

Why do we need a rollup?

▪ Validation of a block of txns is expensive due to 
verifier costs!
▪ Ideal if consensus layer only needs to validate proof 

of block correctness

46



ZKP MOOC

Base Rollup Circuit

47



ZKP MOOC

Merge Rollup Circuit

48



ZKP MOOC

Rolling Up

49

Public kernel proofs

▪ We roll 2 
proofs/circuit

▪ Small circuit sizes = 
fast proofs

▪ Helps decentralization



ZKP MOOC

Root Rollup Circuit

50

▪ Recursively “devolve” proof systems to reduce vinyl verification cost



Credit: Faithie/Shutterstock

ZKP MOOC

Putting it all together

51



ZKP MOOC

Recap (1 / 2)

▪ 3 State trees (private state, public state, contract state)

▪ 1 Nullifier set (private state)

▪ Contracts defined via set of verification keys for 
private/public functions

52



ZKP MOOC

Recap (2 / 2)

▪ Private kernel circuit validates private function 
execution

▪ Public kernel circuit validates public function 
execution + private kernel proof

▪ Rollup circuit validates public kernel proof + performs 
state updates

▪ Root rollup circuit validates rollup proof using SNARK 
protocol w. low verification costs 

53



Credit: Faithie/Shutterstock

ZKP MOOC

Many thanks to

David Banks
Suyash Bagad

Michael Connor
Genevieve Birdsall
Joseph Andrews

54


