Zero Knowledge Proofs

FRI-based Polynomial Commitments and Fiat-Shamir

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

Stanford University

Berkeley

AMM TEXASA\&M

Let's build an efficient SNARK

Recall: What is a Polynomial-IOP?

- P's first message in the protocol is a polynomial h.
- V does not learn h in full.
- The description size of h is as large as the circuit.
- Rather, V is permitted to evaluate h at, say, one point.
- After that, P and V execute a standard interactive proof.

Recall: What is a Polynomial Commitment Scheme?

- High-level idea:
- P binds itself to a polynomial h by sending a short string Com(h).
- V can choose x and ask P to evaluate $h(x)$.
- P sends y, the purported evaluation, plus a proof π that y is consistent with $\operatorname{Com}(h)$ and x.
- Goals:
- P cannot produce a convincing proof for an incorrect evaluation.
- $\operatorname{Com}(h)$ and π are short and easy to generate; π is easy to check.

A Zoo of SNARKs

- There are several different polynomial IOPs in the literature.
- And several different polynomial commitments.
- Can mix-and-match to get different tradeoffs between P time, proof size, setup assumptions, etc.
- Transparency and plausible post-quantum security determined entirely by the polynomial commitment scheme used.

Polynomial IOPs: Three classes

1. Based on interactive proofs (IPs).
2. Based on multi-prover interactive proofs (MIPs).
3. Based on constant-round polynomial IOPs.

- Examples: Marlin, PlonK.
- Above SNARKs roughly listed in increasing order of P costs and decreasing order of proof length and V cost.
- Categories 1 and 2 covered in Lecture 4, Category 3 (PlonK) in Lecture 5.

Polynomial commitments: Three classes

1. Based on pairings + trusted setup (not transparent nor post-quantum).

- e.g., KZG10 (Lecture 5 + 6).
- Unique property: constant sized evaluation proofs.

2. Based on discrete logarithm (transparent, not post-quantum).

- Examples: IPA/Bulletproofs (Lecture 6), Hyrax, Dory.

3. Based on IOPs + hashing (transparent and post-quantum)

- e.g., FRI (will be covered today), Ligero, Brakedown, Orion (Lecture 7).

Polynomial commitments: Three classes

1. Based on pairings + trusted setup (not transparent nor post-quantum).

- e.g., KZG10 (Lecture 5 + 6).
- Unique property: constant sized evaluation proofs.

2. Based on discrete logarithm (transparent, not post-quantum).

- Examples: IPA/Bulletproofs (Lecture 6), Hyrax, Dory.
- Classes 1. and 2. are homomorphic.
- Leads to efficient batching/amortization of P and V costs (e.g., when proving knowledge of several different witnesses).

Some specimens from the zoo

Highlights of SNARK Taxonomy: Transparent SNARKs

1. [Any polynomial IOP] + IPA/Bulletproofs polynomial commitment.

- Ex: Halo2-ZCash
- Pros: Shortest proofs among transparent SNARKs.
- Cons: Slow V

Highlights of SNARK Taxonomy: Transparent SNARKs

2. [Any polynomial IOP] + FRI polynomial commitment.

- Ex: STARKs, Fractal, Aurora, Virgo, Ligero++
- Pros: Shortest proofs amongst plausibly post-quantum SNARKs.
- Cons: Proofs are large (100s of KBs depending on security)

Highlights of SNARK Taxonomy: Transparent SNARKs

3. MIPs and IPs + [fast-prover polynomial commitments].

- Ex: Spartan, Brakedown, Orion, Orion+.
- Pros: Fastest P in the literature, plausibly post-quantum + transparent if polynomial commitment is.
- Cons: Bigger proofs than 1. and 2. above.

Highlights of SNARK Taxonomy: Non-transparent SNARKS

1. Linear-PCP based:

- Ex: Groth16
- Pros: Shortest proofs (3 group elements), fastest V.
- Cons: Circuit-specific trusted setup, slow and space-intensive P, not postquantum

Highlights of SNARK Taxonomy: Non-transparent SNARKS

2. Constant-round polynomial IOP + KZG polynomial commitment:

- Ex: Marlin-KZG, PlonK-KZG
- Pros: Universal trusted setup.
- Cons: Proofs are ~4x-6x larger than Groth16, P is slower than Groth16, also not post-quantum.
- Counterpoint for P: can use more flexible intermediate representations than circuits and R1CS.

FRI (Univariate) Polynomial
 Commitment

Recall: Univariate Polynomial Commitments

1. Let q be a degree- $(k-1)$ polynomial over field \mathbb{F}_{p}.

- E.g., $k=5$ and $q(X)=1+2 X+4 X^{2}+X^{4}$

2. Want P to succinctly commit to q, later reveal $q(r)$ for an $r \in \mathbb{F}_{p}$ chosen by V .

- Along with associated "evaluation proof".

Recall: Initial Attempt from Lecture 4

- P Merkle-commits to all evaluations of the polynomial q.
- When V requests $q(r)$, P reveals the associated leaf along with opening information.

Recall: Initial Attempt from Lecture 4

- P Merkle-commits to all evaluations of the polynomial q.
- When V requests $q(r)$, P reveals the associated leaf along with opening information.
- Two problems:

1. The number of leaves is $|\mathbb{F}|$, which means the time to compute the commitment is at least $|\mathbb{F}|$.

- Big problem when working over large fields (say, $|\mathbb{F}| \approx 2^{64}$ or $|\mathbb{F}| \approx 2^{128}$).
- Want time proportional to the degree bound d.

2. $\quad V$ does not know if f has degree at most k !

Fixing the first problem (Want P time linear in degree, not field size)

- Rather than P Merkle-committing to all $(p-1)$ evaluations of q, P only Merkle-commits to evaluations $q(x)$ for those x in a carefully chosen subset Ω of \mathbb{F}_{p}.

Fixing the first problem (Want P time linear in degree, not field size)

- Rather than P Merkle-committing to all ($p-1$) evaluations of q, P only Merkle-commits to evaluations $q(x)$ for those x in a carefully chosen subset Ω of \mathbb{F}_{p}.
- Ω has size $\rho^{-1} k$ for some constant $\rho \leq 1 / 2$, where k is the degree of q.
- $\rho^{-1} \geq 2$ is called the "FRI blowup factor".
- ρ is called the "rate of the Reed-Solomon code" used.

Fixing the first problem (Want P time linear in degree, not field size)

- Rather than P Merkle-committing to all $(p-1)$ evaluations of q, P only Merkle-commits to evaluations $q(x)$ for those x in a carefully chosen subset Ω of \mathbb{F}_{p}.
- Ω has size $\rho^{-1} k$ for some constant $\rho \leq 1 / 2$, where k is the degree of q.
- $\rho^{-1} \geq 2$ is called the "FRI blowup factor".
- Strong tension between P time and verification costs:
- The bigger the blowup factor, the slower P is, because it has to evaluate q on more inputs and Merkle-hash the results.
- But the smaller the verification costs will be.

Fixing the first problem (Want P time linear in degree, not field size)

- Rather than P Merkle-committing to all $(p-1)$ evaluations of q, P only Merkle-commits to evaluations $q(x)$ for those x in a carefully chosen subset Ω of \mathbb{F}_{p}.
- Ω has size $\rho^{-1} k$ for some constant $\rho \leq 1 / 2$, where k is the degree of q.
- $\rho^{-1} \geq 2$ is called the "FRI blowup factor".
- Strong tension between P time and verification costs:
- The bigger the blowup factor, the slower P is, because it has to evaluate q on more inputs and Merkle-hash the results.
- Proof length will be about $\left(\lambda / \log \left(\rho^{-1}\right)\right) \cdot \log ^{2}(k)$ hash values.
- λ is the security parameter a.k.a. " λ bits of security" (more on this later)

The key subset: roots of unity

- Let $n=\rho^{-1} k$. Assume n is a power of 2 .
- The key subset Ω comprises all nth roots of unity in \mathbb{F}_{p}.
- x such that $x^{n}=1$. Equivalently, $x^{n}-1=0$.

Roots of Unity visualized

8th roots of unity

4th roots of unity

The key subset: roots of unity

- Fact: Let $\omega \in \mathbb{F}_{p}$ be a primitive n^{\prime} 'th root of unity. That is, n is the smallest integer such that $\omega^{n}=1$. Then $\Omega=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}$.

The key subset: roots of unity

- Fact: Let $\omega \in \mathbb{F}_{p}$ be a primitive n^{\prime} th root of unity. That is, n is the smallest integer such that $\omega^{n}=1$. Then $\Omega=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}$.
- Fact: Ω is a "multiplicative subgroup" of \mathbb{F}_{p}.
- If x and y are both n^{\prime} th roots of unity, then so is $x y$.
- Special case $\mathbf{1}$ (since \boldsymbol{n} is even): If x is a n^{\prime} th root of unity, x^{2} is a ($n / 2$)'th root of unity.
- Special case $\mathbf{2}$ (since \boldsymbol{n} is even): if x is a n^{\prime} th root of unity, so is $-x$.

The key subset: roots of unity

- Fact: Let $\omega \in \mathbb{F}_{p}$ be a primitive n^{\prime} 'th root of unity. That is, n is the smallest integer such that $\omega^{n}=1$. Then $\Omega=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}$.
- Fact: Ω is a "multiplicative subgroup" of \mathbb{F}_{p}.
- If x and y are both n^{\prime} th roots of unity, then so is $x y$.
- Special case $\mathbf{1}$ (since \boldsymbol{n} is even): If x is a n^{\prime} th root of unity, x^{2} is a ($n / 2$)'th root of unity. - Special case $\mathbf{2}$ (since \boldsymbol{n} is even): if x is a n^{\prime} th root of unity, so is $-x$.
- Fact: Ω has size n if and only if n divides $p-1$.

The key subset: roots of unity

- Fact: Let $\omega \in \mathbb{F}_{p}$ be a primitive n^{\prime} 'th root of unity. That is, n is the smallest integer such that $\omega^{n}=1$. Then $\Omega=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}$.
- Fact: Ω is a "multiplicative subgroup" of \mathbb{F}_{p}.
- If x and y are both n^{\prime} th roots of unity, then so is $x y$.
- Special case $\mathbf{1}$ (since \boldsymbol{n} is even): If x is a n^{\prime} th root of unity, x^{2} is a ($n / 2$)'th root of unity. - Special case $\mathbf{2}$ (since \boldsymbol{n} is even): if x is a n^{\prime} th root of unity, so is $-x$.
- Fact: Ω has size n if and only if n divides $p-1$.
- This is why many FRI-based SNARKs work over fields like \mathbb{F}_{p} with $p=2^{64}-2^{32}+1$
- $p-1$ is divisible by 2^{32}.
- Running FRI over the field can support any power-of-two value of n up to 2^{32}.

Roots of Unity: finite field example

- Consider the prime field \mathbb{F}_{41} of size 41.
- $1^{\text {st }}$ roots of unity: $\{1\}$
- $2^{\text {nd }}$ roots of unity: $\{1,-1\}$
- $4^{\text {th }}$ roots of unity: $\{1,-1,9,-9\}$.
- $8^{\text {th }}$ roots of unity: $\{1,-1,9,-9,3,-3,14,-14\}$

FRI commitment to a univariate $q(X)$ in $\mathbb{F}_{\mathbf{4 1}}[X]$ when $8=\rho^{-1} k$

Fixing the second problem

- V needs to know that the committed vector is all evaluations over domain Ω of some degree- $(k-1)$ polynomial.
- Idea from the PCP literature: V "inspects" only a few entries of the vector to "get a sense" of whether it is low-degree.
- Each query will add a Merkle-authentication path (i.e., $\log (n)$ hash values) to the proof.
- This turns out to be impractical.
- Instead, the FRI "low-degree test" will be interactive.
- The test will consist of a "folding phase" followed by a "query phase".
- The folding phase is $\log (k)$ rounds. The query phase is one round.

The (interactive) low-degree test: Folding Phase

- Folding Phase:
- "Randomly fold the committed vector in half".
- This means pair up entries of the committed vector, have V pick a random field element r, and use r to "randomly combine" every two paired up entries.
- This halves the length of the vector.
- Have P Merkle-commit to the folded vector.

The (interactive) low-degree test: Folding Phase

- Folding Phase:
- "Randomly fold the committed vector in half".
- This means pair up entries of the committed vector, have V pick a random field element r, and use r to "randomly combine" every two paired up entries.
- This halves the length of the vector.
- Have P Merkle-commit to the folded vector.
- The random combining technique is chosen so that the folded vector will have half the degree of the original vector.
- Repeat the folding until the degree should fall to 0.
- At this point, the length of the folded vector is still $\rho^{-1} \geq 2$. But since the degree should be $0, P$ can specify the folded vector with a single field element.

Folding phase (committed degree-3 polynomial in $\mathbb{F}_{41}[X]$ when $8=4 \rho^{-1}$)

The (interactive) low-degree test: Query Phase

- P may have "lied" at some step of the folding phase, by not performing the fold correctly.
- i.e., sending a vector that is not the prescribed folding of the previous vector.
- To "artificially" reduce the degree of the (claimed) folded vector.
- V attempts to "detect" such inconsistencies during the query phase.

The (interactive) low-degree test: Query Phase

- P may have "lied" at some step of the folding phase, by not performing the fold correctly.
- i.e., sending a vector that is not the prescribed folding of the previous vector.
- To "artificially" reduce the degree of the (claimed) folded vector.
- V attempts to "detect" such inconsistencies during the query phase.
- Query phase: V picks about $\left(\lambda / \log \left(\rho^{-1}\right)\right)$ entries of each folded vector and confirming each is the prescribed linear combination of the relevant two entries of the previous vector.

The (interactive) low-degree test: Query Phase

- P may have "lied" at some step of the folding phase, by not performing the fold correctly.
- i.e., sending a vector that is not the prescribed folding of the previous vector.
- To "artificially" reduce the degree of the (claimed) folded vector.
- V attempts to "detect" such inconsistencies during the query phase.
- Query phase: V picks about $\left(\lambda / \log \left(\rho^{-1}\right)\right)$ entries of each folded vector and confirming each is the prescribed linear combination of the relevant two entries of the previous vector.
- Proof length (and V time): roughly $\left(\lambda / \log \left(\rho^{-1}\right)\right) \log (k)^{2}$ hash evaluations.

Back to the folding phase: more details

The (interactive) low-degree test: Folding Phase

- Split $q(X)$ into "even and odd parts" in the following sense.
- $q(X)=q_{e}\left(X^{2}\right)+X q_{o}\left(X^{2}\right)$
- E.g., if $q(X)=1+2 X+3 X^{2}+4 X^{3}$.
- Then $q_{e}(X)=1+3 X$ and $q_{o}(X)=2+4 X$.
- Note that both q_{e} and q_{o} have (at most) half the degree of q.
- V picks a random field element r and sends r to P.
- The prescribed "folding" q is: $q_{f o l d}(Z)=q_{e}(Z)+r q_{o}(Z)$
- Clearly $\operatorname{deg}\left(q_{f o l d}\right)$ is half the degree of q itself.

The (interactive) low-degree test: Folding Phase

- Recall: $q(X)=q_{e}\left(X^{2}\right)+X q_{o}\left(X^{2}\right)$
- Recall: The prescribed "folding" q is: $q_{f o l d}(Z)=q_{e}(Z)+r q_{o}(Z)$.

The (interactive) low-degree test: Folding Phase

- Recall: $q(X)=q_{e}\left(X^{2}\right)+X q_{o}\left(X^{2}\right)$
- Recall: The prescribed "folding" q is: $q_{f o l d}(Z)=q_{e}(Z)+r q_{o}(Z)$.
- Fact: Let x and $-x$ be n^{\prime} th roots of unity and $z=x^{2}$. Then:

$$
q_{f o l d}(\mathrm{z})=\frac{(r+x)}{2 x} q(x)+\frac{(r-x)}{-2 x} q(-x)
$$

The (interactive) low-degree test: Folding Phase

- Recall: $q(X)=q_{e}\left(X^{2}\right)+X q_{o}\left(X^{2}\right)$
- Recall: The prescribed "folding" q is: $q_{f o l d}(Z)=q_{e}(Z)+r q_{o}(Z)$.
- Fact: Let x and $-x$ be n^{\prime} th roots of unity and $z=x^{2}$. Then:

$$
q_{f o l d}(\mathrm{z})=\frac{(r+x)}{2 x} q(x)+\frac{(r-x)}{-2 x} q(-x)
$$

- Proof: Clearly $q(x)=q_{e}(z)+x q_{o}(z)$.
- In other words, if $r=x$ then $q_{\text {fold }}(\mathrm{z})=q(x)$.
- Similarly, if $r=-x$ then $q_{\text {fold }}(\mathrm{z})=q(-x)$.

The (interactive) low-degree test: Folding Phase

- Recall: $q(X)=q_{e}\left(X^{2}\right)+X q_{o}\left(X^{2}\right)$
- Recall: The prescribed "folding" q is: $q_{f o l d}(Z)=q_{e}(Z)+r q_{o}(Z)$.
- Fact: Let x and $-x$ be n^{\prime} th roots of unity and $z=x^{2}$. Then:

$$
q_{f o l d}(\mathrm{z})=\frac{(r+x)}{2 x} q(x)+\frac{(r-x)}{-2 x} q(-x)
$$

- Proof: Clearly $q(x)=q_{e}(z)+x q_{o}(z)$.
- In other words, if $r=x$ then $q_{\text {fold }}(\mathrm{z})=q(x)$.
- Similarly, if $r=-x$ then $q_{\text {fold }}(\mathrm{z})=q(-x)$.
- The fact follows because it gives a degree-1 function of r with exactly this behavior at $r=-x$ and $r=x$, and any two degree- 1 functions of r that agree at two or more inputs must be the same function.

Folding phase (committed degree-3 polynomial in $\mathbb{F}_{41}[X]$ when $8=4 \rho^{-1}$)

The (interactive) low-degree test: Folding Phase

- Recall: $q(X)=q_{e}\left(X^{2}\right)+X q_{o}\left(X^{2}\right)$
- Recall: The prescribed "folding" q is: $q_{f o l d}(Z)=q_{e}(Z)+r q_{o}(Z)$.
- The fact that the map $x \mapsto x^{2}$ is 2-to-1 on $\Omega=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}$ ensures that the relevant domain halves in size with each fold.
- Other domains, like $\{0,1,2, \ldots n-1\}$, don't have this property.

Compare to Lecture 7

- Lecture 7 covered a variety of polynomial commitments (Ligero, Brakedown, Orion) that are similar to FRI.
- All use error-correcting codes.
- The only cryptography used is hashing (Merkle-hashing + Fiat-Shamir).

Compare to Lecture 7

- Lecture 7 covered a variety of polynomial commitments (Ligero, Brakedown, Orion) that are similar to FRI.
- All use error-correcting codes.
- The only cryptography used is hashing (Merkle-hashing + Fiat-Shamir).
- The Lecture 7 schemes viewed a degree- d polynomial as $d^{1 / 2}$ vectors each of length about $d^{1 / 2}$ and performed "a single random fold on all these vectors".
- This resulted in larger proofs (size roughly $d^{1 / 2}$), but some advantages (e.g., lineartime prover, field-agnostic).
- Proof size can be reduced via SNARK composition (will be discussed in Lecture 10).
- FRI views a degree- d polynomial as a single vector of length $O(d)$ and "randomly folds it in half" logarithmically many times.

Sketch of the security analysis

The security analysis

- Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector w claimed to equal q 's evaluations over Ω.
- Here, Ω is the set of n^{\prime} th roots of unity in \mathbb{F}_{p}, where $n=\rho^{-1} k$.
- And q is claimed to have degree less than k.

The security analysis
" Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree $k-1$.

- δ is the fraction of $x \in \Omega$ such that $h(x) \neq q(x)$.

The security analysis
" Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree $k-1$. - δ is the fraction of $x \in \Omega$ such that $h(x) \neq q(x)$.
" Claim: P "passes" all t "FRI verifier queries" with probability at most $\frac{k}{p}+(1-\delta)^{t}$.

The security analysis

- Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree $k-1$.
- δ is the fraction of $x \in \Omega$ such that $h(x) \neq q(x)$.
- Claim: P "passes" all t "FRI verifier queries" with probability at most $\frac{k}{p}+(1-\delta)^{t}$.
- Caveat: this is only known to hold for δ up to $1-\rho^{1 / 2}$, but is conjectured to hold for δ up to $1-\rho$.
- Most FRI deployments' security are analyzed under this conjecture.
- Informal interpretation: FRI V accepts with probability at most about $(1-(1-\rho))^{t}=\rho^{t}$.
- In other words, each of the t queries contributes about $\log 2(1 / \rho)$ "bits of security".

The security analysis

- Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree $k-1$.
- δ is the fraction of $x \in \Omega$ such that $h(x) \neq q(x)$.
- Claim: P "passes" all t "FRI verifier queries" with probability at most $\frac{k}{p}+(1-\delta)^{t}$.
- Caveat: this is only known to hold for δ up to $1-\rho^{1 / 2}$, but is conjectured to hold for δ up to $1-\rho$.
- Most FRI deployments' security are analyzed under this conjecture.
- Informal interpretation: FRIV accepts with probability at most about $(1-(1-\rho))^{t}=\rho^{t}$.
- In other words, each of the t queries contributes about $\log 2(1 / \rho)$ "bits of security".
- E.g., if $\rho=\frac{1}{4}$, each FRI verifier queries contributes about 2 bits of security.
- At the cost of roughly $\log (n)^{2}$ hash values included in the proof.

The security analysis

- Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree $k-1$.
- δ is the fraction of $x \in \Omega$ such that $h(x) \neq q(x)$.
- Claim: P "passes" all t "FRI verifier queries" with probability at most $\frac{k}{p}+(1-\delta)^{t}$.
- Recall: $q_{f o l d}(Z)=q_{e}(Z)+r q_{o}(Z)$.
- Can check: since q is δ-far from every degree- $(k-1)$ polynomial h, at least one of q_{e} or q_{o} must be δ-far from every degree- $(k / 2-1)$ polynomial over the $(n / 2)$-roots of unity.
- Idea: A "random linear combination" of two functions, at least one of which is δ-far from degree- d polynomials, will also be is δ-far from degree- d with overwhelming probability.
- The $\frac{k}{p}$ term bounds the probability that P "gets a lucky fold".
- $q_{f o l d}$ is close to degree- $(k / 2-1)$ even though q is not close to degree- $(k-1)$.

The security analysis

- Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree $k-1$.
- δ is the fraction of $x \in \Omega$ such that $h(\mathrm{x}) \neq q(x)$.
- Claim: P "passes" all t "FRI verifier queries" with probability at most $\frac{k}{p}+(1-\delta)^{t}$.
- Idea 2: If P does "not get a lucky fold", then the "true" final folded function is δ-far from any degree-0 function.
- But P is forced to send a degree- 0 function as the final fold.
- So at least one "fold" is done dishonestly by P.
- In this case, each "FRI verifier query" detects a discrepancy in a fold with probability at least δ.
- So all FRI verifier queries fail to detect the discrepancy with probability at most $(1-\delta)^{t}$.

The Known Attack on FRI

The known attack

- Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector w claimed to equal q 's evaluations over Ω.
- Here, Ω is the set of n^{\prime} th roots of unity in \mathbb{F}_{p}, where $n=\rho^{-1} k$.
- And q is claimed to have degree less than k.
- The following P strategy works for any q (even ones maximally far from degree- k) and passes all FRI verifier checks with probability ρ^{t}.

The known attack

- Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector w claimed to equal q 's evaluations over Ω.
- Here, Ω is the set of n^{\prime} th roots of unity in \mathbb{F}_{p}, where $n=\rho^{-1} k$.
- And q is claimed to have degree less than k.
- The following P strategy works for any q (even ones maximally far from degree- k) and passes all FRI verifier checks with probability ρ^{t}.
- P picks a set T of $k=\rho n$ elements of Ω and computes a polynomial s of degree $k-1$ that agrees with q at those points.
- P folds s rather than q during the folding phase.
- All t FRI verifier queries lie in T with probability ρ^{t}.

Polynomial Commitment from FRI

- P Merkle-commits to all evaluations of the polynomial q.
- When V requests $q(r)$, P reveals the associated leaf along with opening information.
- New Problems with FRI:
- P has only Merkle-committed to evaluations of q over domain Ω, not the whole field.
- V only knows that q is "not too far" from low-degree, not exactly low-degree.

A fix for both problems

- Recall the following FACT used in KZG commitments:
- FACT: For any degree- d univariate polynomial q, the assertion " $q(r)=v$ " is equivalent to the existence of a polynomial w of degree at most d such that - $q(X)-v=w(X)(X-r)$.
- So to confirm that $\boldsymbol{q}(r)=v, \mathrm{~V}$ applies FRI's fold+query procedure to the function $(q(X)-v)(X-r)^{-1}$ using degree bound $d-1$.

A fix for both problems

- Recall the following FACT used in KZG commitments:
- FACT: For any degree- d univariate polynomial q, the assertion " $q(r)=v$ " is equivalent to the existence of a polynomial w of degree at most d such that - $q(X)-v=w(X)(X-r)$.
- So to confirm that $\boldsymbol{q}(r)=v, \mathrm{~V}$ applies FRI's fold+query procedure to the function $(q(X)-v)(X-r)^{-1}$ using degree bound $d-1$.
- Whenever the FRI verifier queries this function at a point in Ω, the evaluation can be obtained with one query to q at the same point.

A fix for both problems

- Recall the following FACT used in KZG commitments:
- FACT: For any degree- d univariate polynomial q, the assertion " $q(r)=v$ " is equivalent to the existence of a polynomial w of degree at most d such that - $q(X)-v=w(X)(X-r)$.
- So to confirm that $\boldsymbol{q}(r)=v, \mathrm{~V}$ applies FRI's fold+query procedure to the function $(q(X)-v)(X-r)^{-1}$ using degree bound $d-1$.
- Whenever the FRI verifier queries this function at a point in Ω, the evaluation can be obtained with one query to q at the same point.
- Can show: To pass V's checks in this polynomial commitment with noticeable probability, v has to equal $h(r)$, where h is the degree-d polynomial that is closest to q.

A fix for both problems

- Recall the following FACT used in KZG commitments:
- FACT: For any degree- d univariate polynomial q, the assertion " $q(r)=v$ " is equivalent to the existence of a polynomial w of degree at most d such that - $q(X)-v=w(X)(X-r)$.
- So to confirm that $\boldsymbol{q}(\boldsymbol{r})=\boldsymbol{v}, \mathrm{V}$ applies FRI's fold+query procedure to the function $(q(X)-v)(X-r)^{-1}$ using degree bound $d-1$.
- Whenever the FRI verifier queries this function at a point in Ω, the evaluation can be obtained with one query to q at the same point.
- Caveat: The security analysis requires δ to be (at most) $(1-\rho) / 2$. Each FRI verifier queries brings (less than) 1 bit of security, not $\log 2(1 / \rho)$ bits.

A fix for both problems

- Recall the following FACT used in KZG commitments:
- FACT: For any degree- d univariate polynomial q, the assertion " $q(r)=v$ " is equivalent to the existence of a polynomial w of degree at most d such that - $q(X)-v=w(X)(X-r)$.
- So to confirm that $\boldsymbol{q}(\boldsymbol{r})=\boldsymbol{v}, \mathrm{V}$ applies FRI's fold+query procedure to the function $(q(X)-v)(X-r)^{-1}$ using degree bound $d-1$.
- Whenever the FRI verifier queries this function at a point in Ω, the evaluation can be obtained with one query to q at the same point.
- People are using FRI today as a weaker primitive than a polynomial commitment, which still suffices for SNARK security.
- P is bound to a "small set" of low-degree polynomials rather than to a single one.

The Fiat-Shamir Transformation and Concrete Security

Recall: Fiat-Shamir transformation

Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:

- P_{FS} iterates over first-messages α until it finds one such that $R(x, \alpha)$ is "lucky"

Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:

- P_{FS} iterates over first-messages α until it finds one such that $R(x, \alpha)$ is "lucky"

Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:

- P_{Fs} iterates over first-messages α until it finds one such that $R(x, \alpha)$ is "lucky"
- Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of statistical security (soundness error 2^{-80}).
- With 2^{b} hash evaluations, grinding attack will succeed with probability 2^{-80+b}.
- E.g., with 2^{70} hashes, successfully attack with probability about 2^{-10}.

Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:

- P_{FS} iterates over first-messages α until it finds one such that $R(x, \alpha)$ is "lucky"
- Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of statistical security (soundness error 2^{-80}).
- With 2^{b} hash evaluations, grinding attack will succeed with probability 2^{-80+b}.
- E.g., with 2^{70} hashes, successfully attack with probability about 2^{-10}.

Comparison:
For a collision-resistant hash function (CRHF) configured to 80 bits of security, the fastest collision-finding procedure should be a birthday attack.

Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:

- P_{FS} iterates over first-messages α until it finds one such that $R(x, \alpha)$ is "lucky"
- Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of statistical security (soundness error 2^{-80}).
- With 2^{b} hash evaluations, grinding attack will succeed with probability 2^{-80+b}.
- E.g., with 2^{70} hashes, successfully attack with probability about 2^{-10}.

Comparison:
With 2^{k} hash evaluations, finds a collision with a probability of only $2^{2 k-160}$. For example, 2^{70} hash evaluations will yield a collision with a probability of 2^{-20}.

How many hashes are feasible today?

1. Today, the bitcoin network performs 2^{80} SHA- 256 hashes roughly every hour.

- At current prices, those hashes typically earn less than \$1 million worth of block rewards.

How many hashes are feasible today?

1. Today, the bitcoin network performs 2^{80} SHA- 256 hashes roughly every hour.

- At current prices, those hashes typically earn less than $\$ 1$ million worth of block rewards.

2. In January 2020, the cost of computing just shy of 2^{64} SHA-1 evaluations using GPUs was $\$ 45,000$.

- This puts 2^{70} hashes at about $\$ 3,000,000$.
- Likely less today, post-Ethereum-merge.

Interactive vs. NonInteractive Security

Interactive Security

- A polynomial commitment scheme such as FRI, when run interactively at " λ bits of security", has the following security guarantee
- Assuming P cannot find a collision in the hash function used to build Merkle trees, a lying P cannot pass the verifier's checks with probability better than $2^{-\lambda}$.
- A lying P must actually interact with V to learn V's challenges, in order to find out if it receives a "lucky" challenge!

Interactive Security

- For example, if $\lambda=60$, then with probability at least 1- 2^{-30}, V will reject (at least) 2^{30} times before a lying P succeeds in convincing V to accept.
- It seems unlikely that V would continue interacting with a P that has been caught in a lie 2^{30} times.
- In many settings, interactive with V may take long enough that P wouldn't have time to make 1 billion attempts even if V were willing to consider each one.
- E.g., One billion Ethereum blocks take 3 years to create (at one block per 12 seconds).

Non-interactive security

- Suppose Fiat-Shamir is applied to an interactive protocol such as FRI that was run at λ bits of interactive security.
- The resulting non-interactive protocol has the following much weaker guarantee:
- A lying P willing to perform 2^{k} hash evaluations can successfully attack the protocol with probability $2^{k-\lambda}$.
- A lying P can attempt the attack "silently".
- Unlike in the interactive case, P can perform a "grinding attack" without interacting with V until P receives a lucky challenge.

Non-interactive security

- Suppose Fiat-Shamir is applied to an interactive protocol such as FRI that was run at λ bits of interactive security.
- The resulting non-interactive protocol has the following much weaker guarantee:
- A lying P willing to perform 2^{k} hash evaluations can successfully attack the protocol with probability $2^{k-\lambda}$
- A lying P can attempt the attack "silently".
- Unlike in the interactive case, P can perform a "grinding attack" without interacting with V until P receives a lucky challenge.
- Higher security levels λ are necessary in this setting.
- 60 bits of interactive security is fine in many contexts.
- 60 bits of non-interactive security is not okay unless the payoff of a successful attack is minimal.

Fiat-Shamir security loss for many-round protocols can be huge

An interactive protocol

- Consider the following (silly) interactive protocol for the empty language (i.e., V should always reject).
- \quad P sends a message (a nonce) which V ignores.
- $\quad V$ tosses a random coin, rejecting if it comes up heads and accepting if it comes up tails.
- The soundness error of this protocol is $1 / 2$.
- If you sequentially repeat it λ times and accept only if every run accepts, the soundness error falls to $1 / 2^{\lambda}$.

Fiat-Shamir-ing this interactive protocol is insecure

- Recall: If you sequentially repeat it λ times and accept only if every run accepts, the soundness error falls to $1 / 2^{\lambda}$.
- Consider Fiat-Shamir-ing this λ-round protocol to render it non-interactive.
- A cheating prover $P_{\text {FS }}$ can find a convincing "proof" for the non-interactive protocol with $O(\lambda)$ hash evaluations.

Fiat-Shamir-ing this interactive protocol is insecure

- Recall: If you sequentially repeat it λ times and accept only if every run accepts, the soundness error falls to $1 / 2^{\lambda}$.
- Consider Fiat-Shamir-ing this λ-round protocol to render it non-interactive.
- A cheating prover $P_{F S}$ can find a convincing "proof" for the non-interactive protocol with $O(\lambda)$ hash evaluations.
- Idea: $P_{F S}$ grinds on the first repetition alone (i.e., iterate over nonces in the first repetition until one is found that hashes to tails. This requires 2 attempts in expectation until success.) Fix this first nonce m_{1} for the remainder of the attack.

Fiat-Shamir-ing this interactive protocol is insecure

- Recall: If you sequentially repeat it λ times and accept only if every run accepts, the soundness error falls to $1 / 2^{\lambda}$.
- Consider Fiat-Shamir-ing this λ-round protocol to render it non-interactive.
- A cheating prover $P_{F S}$ can find a convincing "proof" for the non-interactive protocol with $O(\lambda)$ hash evaluations.
- Idea: $P_{F S}$ grinds on the first repetition alone (i.e., iterate over nonces in the first repetition until one is found that hashes to tails. This requires 2 attempts in expectation until success.) Fix this first nonce m_{1} for the remainder of the attack.
- Then P_{FS} grinds on the second repetition alone until it finds an m_{2} such that (m_{1}, m_{2}) hashes to tails. Fix m_{2} for the remainder of the attack.
- Then $P_{F S}$ grinds on the third repetition, and so on.

The takeaway

- Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge loss in security, whereby the resulting non-interactive protocol is totally insecure.

The takeaway

- Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge loss in security, whereby the resulting non-interactive protocol is totally insecure.
- Fortunately, this security loss can be ruled out if the interactive protocol satisfies a stronger notion of soundness called round-by-round soundness.

The takeaway

- Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge loss in security, whereby the resulting non-interactive protocol is totally insecure.
- Fortunately, this security loss can be ruled out if the interactive protocol satisfies a stronger notion of soundness called round-by-round soundness.
- This means an attacker in the interactive protocol has to "get very lucky all at once" (in a single round)... it can't succeed by getting "a little bit lucky many times".
- The sequential repetition of soundness error $1 / 2$ is not round-by-round sound.
- The attacker can "get a little lucky" each round and succeed (i.e., in each round with probability $1 / 2$ it gets the "lucky" challenge Tails each round).
- The sum-check protocol (Lecture 4) is an example of a logarithmic-round protocol that is known to be round-by-round sound.
- Something analogous is known for Bulletproofs [AFK22, Wik21].

The takeaway

- Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge loss in security, whereby the resulting non-interactive protocol is totally insecure.
- Fortunately, this security loss can be ruled out if the interactive protocol satisfies a stronger notion of soundness called round-by-round soundness.
- FRI is a logarithmic-round interactive protocol that is always deployed noninteractively today.
- It has not been shown to be round-by-round sound.

The takeaway

- Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge loss in security, whereby the resulting non-interactive protocol is totally insecure.
- Fortunately, this security loss can be ruled out if the interactive protocol satisfies a stronger notion of soundness called round-by-round soundness.
- FRI is a logarithmic-round interactive protocol that is always deployed noninteractively today.
- It has not been shown to be round-by-round sound.
- SNARK designers applying Fiat-Shamir to interactive protocols with more than 3 messages should show that the protocol is round-by-round sound if they want to rule out a major security loss.

END OF LECTURE

Next lecture:
SNARKs from Linear PCPs
(e.g., Groth16)

Example: Reed-Solomon encoding of a vector over \mathbb{F}_{11}.

	$q_{a}(X)=2+\mathrm{X}+X^{2}$	2	$q_{a}(0)$	0	$q_{a}(6)$
2		1	$q_{a}(1)$	5	$q_{a}(7)$
1		1	$q_{a}(2)$	0	$q_{a}(8)$
1		2	$q_{a}(3)$	7	$q_{a}(9)$
a		4	$q_{a}(4)$	4	$q_{a}(10)$
		7	$q_{a}(5)$		

FRI (citation)

1. Recall from Lecture 5 : n'th roots of unity

Let $\omega \in \mathbb{F}_{p}$ be a primitive k-th root of unity (so that $\omega^{k}=1$).

- if $\Omega=\left\{1, \omega, \omega^{2}, \ldots, \omega^{k-1}\right\} \subseteq \mathbb{F}_{p}$ then $Z_{\Omega}(X)=X^{k}-1$

