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Let’s build an efficient SNARK

A polynomial 
interactive

oracle proof (IOP)

A polynomial
commitment

scheme

SNARK for 
general circuits



• P’s first message in the protocol is a polynomial ℎ.
• V does not learn ℎ in full. 

• The description size of ℎ is as large as the circuit. 
• Rather, V is permitted to evaluate ℎ at, say, one point.
• After that, P and V execute a standard interactive proof.

• Ignoring cost of polynomial commitment, P runs in linear time, 
and proof length is logarithmic [VTBW14, XZZPS19, Setty20].

Recall: What is a Polynomial-IOP? 



▪ High-level idea:

▪ P binds itself to a polynomial ℎ by sending a short string Com ℎ .

▪ V can choose 𝑥 and ask P to evaluate ℎ(𝑥).

▪ P sends 𝑦, the purported evaluation, plus a proof 𝜋 that 𝑦 is consistent 
with Com ℎ and 𝑥.

▪ Goals:

▪ P cannot produce a convincing proof for an incorrect evaluation.

▪ Com ℎ and 𝜋 are short and easy to generate; 𝜋 is easy to check. 

Recall: What is a Polynomial Commitment Scheme?
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A Zoo of SNARKs

▪ There are several different polynomial IOPs in the literature. 

▪ And several different polynomial commitments. 

▪ Can mix-and-match to get different tradeoffs between P time, proof 
size, setup assumptions, etc. 

▪ Transparency and plausible post-quantum security determined 
entirely by the polynomial commitment scheme used.
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Polynomial IOPs: Three classes

1. Based on interactive proofs (IPs).

2. Based on multi-prover interactive proofs (MIPs).

3. Based on constant-round polynomial IOPs.

▪ Examples: Marlin, PlonK.

▪ Above SNARKs roughly listed in increasing order of P costs and 
decreasing order of proof length and V cost.

▪ Categories 1 and 2 covered in Lecture 4, Category 3 (PlonK) in Lecture 5.
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Polynomial commitments: Three classes

1. Based on pairings + trusted setup (not transparent nor post-quantum).

▪ e.g., KZG10 (Lecture 5 + 6). 

▪ Unique property: constant sized evaluation proofs. 

2. Based on discrete logarithm (transparent, not post-quantum).

▪ Examples: IPA/Bulletproofs (Lecture 6), Hyrax, Dory.

3. Based on IOPs + hashing (transparent and post-quantum)

▪ e.g., FRI (will be covered today), Ligero, Brakedown, Orion (Lecture 7). 
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Polynomial commitments: Three classes

1. Based on pairings + trusted setup (not transparent nor post-quantum).

▪ e.g., KZG10 (Lecture 5 + 6). 

▪ Unique property: constant sized evaluation proofs. 

2. Based on discrete logarithm (transparent, not post-quantum).

▪ Examples: IPA/Bulletproofs (Lecture 6), Hyrax, Dory.

▪ Classes 1. and 2. are homomorphic.

▪ Leads to efficient batching/amortization of P and V costs (e.g., when 
proving knowledge of several different witnesses). 
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Some specimens 
from the zoo
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Highlights of SNARK Taxonomy: Transparent SNARKs

1. [Any polynomial IOP] + IPA/Bulletproofs polynomial commitment.

▪ Ex: Halo2-ZCash

▪ Pros: Shortest proofs among transparent SNARKs.

▪ Cons: Slow V
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Highlights of SNARK Taxonomy: Transparent SNARKs

2.  [Any polynomial IOP] + FRI polynomial commitment.

▪ Ex: STARKs, Fractal, Aurora, Virgo, Ligero++

▪ Pros: Shortest proofs amongst plausibly post-quantum SNARKs.

▪ Cons: Proofs are large (100s of KBs depending on security)
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Highlights of SNARK Taxonomy: Transparent SNARKs

3.   MIPs and IPs + [fast-prover polynomial commitments].

▪ Ex: Spartan, Brakedown, Orion, Orion+.

▪ Pros: Fastest P in the literature, plausibly post-quantum + transparent if polynomial 
commitment is.

▪ Cons: Bigger proofs than 1. and 2. above.
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Highlights of SNARK Taxonomy: Non-transparent SNARKS 

1. Linear-PCP based:

▪ Ex: Groth16

▪ Pros: Shortest proofs (3 group elements), fastest V.

▪ Cons: Circuit-specific trusted setup, slow and space-intensive P, not post-
quantum
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Highlights of SNARK Taxonomy: Non-transparent SNARKS 

2.   Constant-round polynomial IOP + KZG polynomial commitment:

▪ Ex: Marlin-KZG, PlonK-KZG

▪ Pros: Universal trusted setup.

▪ Cons: Proofs are ~4x-6x larger than Groth16, P is slower than Groth16, also 
not post-quantum. 

▪ Counterpoint for P: can use more flexible intermediate representations 
than circuits and R1CS.
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FRI (Univariate) 
Polynomial 

Commitment
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Recall: Univariate Polynomial Commitments

1. Let 𝑞 be a degree-(𝑘 − 1) polynomial over field 𝔽𝑝.

▪ E.g., 𝑘 = 5 and 𝑞 𝑋 = 1 + 2𝑋 + 4𝑋2+ 𝑋4

2. Want P to succinctly commit to 𝑞, later reveal 𝑞 𝑟 for an 𝑟 ∈ 𝔽𝑝 chosen by V.

▪ Along with associated “evaluation proof”.
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▪ P Merkle-commits to all evaluations of the polynomial 𝑞.

▪ When V requests 𝑞 𝑟 , P reveals the associated leaf along with 
opening information.

Two problems: 

The number of leaves is |𝔽|, which means the time to compute the 
commitment is at least 𝔽 .

Big problem when working over large fields (say, 𝔽 ≈ 264or 𝔽 ≈ 2128).

Want time proportional to the degree bound 𝑑.

V does not know if 𝑓 has degree at most 𝑑!

Recall: Initial Attempt from Lecture 4
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▪ Rather than P Merkle-committing to all (𝑝 − 1) evaluations of 𝑞, P only 
Merkle-commits to evaluations 𝑞 𝑥 for those 𝑥 in a carefully chosen subset
Ω of 𝔽𝑝.

The subset has size ρ−1 𝑘 for some constant ρ.

ρ−1 is called the “FRI blowup factor”

Strong tension between P time and verification costs:

The bigger the blowup factor, the slower P is, because it has to evaluate 𝑞 on 
more inputs and Merkle-hash the results.

But the smaller the verification costs will be. 

Proof length will be about (λ/log ρ−1 ) ∙ log2(𝑘) hash values. 

Fixing the first problem (Want P time linear in degree, not field size)
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▪ Rather than P Merkle-committing to all (𝑝 − 1) evaluations of 𝑞, P only 
Merkle-commits to evaluations 𝑞 𝑥 for those 𝑥 in a carefully chosen subset
Ω of 𝔽𝑝.

▪ Ω has size ρ−1 𝑘 for some constant ρ ≤ 1/2, where 𝑘 is the degree of 𝑞.

▪ ρ−1 ≥ 2 is called the “FRI blowup factor”.

▪ ρ is called the “rate of the Reed-Solomon code” used.

Strong tension between P time and verification costs:

The bigger the blowup factor, the slower P is, because it has to evaluate 𝑞 on 
more inputs and Merkle-hash the results.

But the smaller the verification costs will be. 

Fixing the first problem (Want P time linear in degree, not field size)
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▪ Rather than P Merkle-committing to all (𝑝 − 1) evaluations of 𝑞, P only 
Merkle-commits to evaluations 𝑞 𝑥 for those 𝑥 in a carefully chosen subset
Ω of 𝔽𝑝.

▪ Ω has size ρ−1 𝑘 for some constant ρ ≤ 1/2, where 𝑘 is the degree of 𝑞.

▪ ρ−1 ≥ 2 is called the “FRI blowup factor”.

▪ Strong tension between P time and verification costs:

▪ The bigger the blowup factor, the slower P is, because it has to evaluate 𝑞
on more inputs and Merkle-hash the results.

▪ Proof length will be about (λ/log ρ−1 ) ∙ log2(𝑘) hash values. 

▪ λ is the security parameter a.k.a. “λ bits of security” (more on this later)

Fixing the first problem (Want P time linear in degree, not field size)
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The key subset: roots of unity 

▪ Let 𝑛 = ρ−1 𝑘. Assume 𝑛 is a power of 2. 

▪ The key subset Ω comprises all 𝑛th roots of unity in 𝔽𝑝.

▪ 𝑥 such that 𝑥𝑛 = 1. Equivalently, 𝑥𝑛 − 1 = 0.

Fact: Ω is a “multiplicative subgroup” of 𝔽𝑝.

If 𝑥 and 𝑦 are both 𝑛′th roots of unity, then so is 𝑥𝑦.

Special case: If 𝑥 is an 𝑛’th root of unity, then so is −𝑥.

Fact: Ω has size 𝑛 if and only if 𝑛 divides 𝑝 − 1. 

Fact: Let 𝜔 ∈ 𝔽𝑝 be a primitive 𝑛′th root of unity. That is, 𝑛 is the smallest power such 

that 𝜔𝑛 = 1. Then Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑛-1 }. 

Fact: If 𝑥 is an 𝑛’th root of unity, then 𝑥2 is an (𝑛/2)’th root of unity



ZKP MOOC

Roots of Unity visualized

16th roots of unity 8th roots of unity 4th roots of unity
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The key subset: roots of unity 

▪ Fact: Let 𝜔 ∈ 𝔽𝑝 be a primitive 𝑛′th root of unity. That is, 𝑛 is the smallest integer such 

that 𝜔𝑛 = 1. Then Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑛-1 }. 

Fact: Ω is a “multiplicative subgroup” of 𝔽𝑝.

If 𝑥 and 𝑦 are both 𝑛′th roots of unity, then so is 𝑥𝑦.

Special case 1: If 𝑥 is an 𝑛’th root of unity, then 𝑥2 is an (𝑛/2)’th root of unity.

Special case 2 (since 𝒏 is even): if 𝑥 is an 𝑛’th root of unity, so is −𝑥.

Fact: Ω has size 𝑛 if and only if 𝑛 divides 𝑝 − 1. 
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The key subset: roots of unity 

▪ Fact: Let 𝜔 ∈ 𝔽𝑝 be a primitive 𝑛′th root of unity. That is, 𝑛 is the smallest integer such 

that 𝜔𝑛 = 1. Then Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑛-1 }. 

▪ Fact: Ω is a “multiplicative subgroup” of 𝔽𝑝.

▪ If 𝑥 and 𝑦 are both 𝑛′th roots of unity, then so is 𝑥𝑦.

▪ Special case 1 (since 𝒏 is even): If 𝑥 is a 𝑛’th root of unity, 𝑥2 is a (𝑛/2)’th root of unity.

▪ Special case 2 (since 𝒏 is even): if 𝑥 is a 𝑛’th root of unity, so is −𝑥.

▪ Fact: Ω has size 𝑛 if and only if 𝑛 divides 𝑝 − 1. 

▪ This is why many FRI-based SNARKs work over fields like 𝔽𝑝 with 𝑝 = 264 − 232 + 1

• 𝑝 − 1 is divisible by 232.

• Running FRI over the field can support any power-of-two value of 𝑛 up to 232. 



ZKP MOOC

Roots of Unity: finite field example

▪ Consider the prime field 𝔽𝟒𝟏 of size 41.

▪ 1st roots of unity: {1}

▪ 2nd roots of unity: {1, -1}

▪ 4th roots of unity: {1, -1, 9, -9}. 

▪ 8th roots of unity: {1, -1, 9, -9, 3, -3, 14, -14}

5th roots of unity: {1, 10, 16, 18, 37}
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𝑞(1) 𝑞(−1)

𝑚1 =
𝐻(𝑞(1),q(−1))

𝑞(3) 𝑞(−3)

𝑚2 =
H(𝑞(3),q(−3))

q(9) q(−9)

𝑚3 =
H(𝑞(9),q(−9))

q(14) q(−14)

𝑚4 =
H(𝑞(14),q(−14))

k1=H(h1, h2)

h1=H(m1, m2) h2=H(m3, m4)

FRI commitment to a univariate q(𝑋) in 𝔽𝟒𝟏 𝑋 when 8 = ρ−1 𝑘
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▪ V needs to know that the committed vector is all evaluations over domain Ω of 
some degree-(𝑘 − 1) polynomial.

▪ Idea from the PCP literature: V “inspects” only a few entries of the vector to “get a 
sense” of whether it is low-degree. 

▪ Each query will add a Merkle-authentication path (i.e., log(𝑛) hash values) to 
the proof. 

▪ This turns out to be impractical. 

▪ Instead, the FRI “low-degree test” will be interactive. 

▪ The test will consist of a “folding phase” followed by a “query phase”.

▪ The folding phase is log 𝑘 rounds. The query phase is one round.

Fixing the second problem
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▪ Folding Phase:

▪ ”Randomly fold the committed vector in half”.

▪ This means pair up entries of the committed vector, have V pick a random field 
element 𝑟, and use 𝑟 to “randomly combine” every two paired up entries.

▪ This halves the length of the vector.

▪ Have P Merkle-commit to the folded vector. 

The combining technique is chosen so that the folded vector will have half the degree 
of the original vector.

Repeat the folding until the degree should fall to 0.

At this point, the length of the folded vector is still ρ−1 ≥ 2. But since the degree 
should be 0, P can specify the folded vector with a single field element. 

The (interactive) low-degree test: Folding Phase
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▪ Folding Phase:

▪ ”Randomly fold the committed vector in half”.

▪ This means pair up entries of the committed vector, have V pick a random field 
element 𝑟, and use 𝑟 to “randomly combine” every two paired up entries.

▪ This halves the length of the vector.

▪ Have P Merkle-commit to the folded vector. 

▪ The random combining technique is chosen so that the folded vector will have half 
the degree of the original vector.

▪ Repeat the folding until the degree should fall to 0.

▪ At this point, the length of the folded vector is still ρ−1 ≥ 2. But since the degree 
should be 0, P can specify the folded vector with a single field element. 

The (interactive) low-degree test: Folding Phase
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Folding phase (committed degree-3 polynomial in 𝔽𝟒𝟏 𝑋 when 8 = 4ρ−1) 

𝑞(1) 𝑞(-1) q(9) q(-9) 𝑞(3) 𝑞(-3) q(14) q(-14)

𝑟1+1

2
𝑞(1)+

𝑟1−1

−2
𝑞(-1)

≔ 𝐵(1)

𝑟1+9

2∙9
𝑞(9)+

𝑟1−9

−2∙9
𝑞(-9)

≔ 𝐵(-1)

𝑟1+3

2∙3
𝑞(3)+

𝑟1−3

−2∙3
𝑞(-3)

≔ 𝐵(9)

𝑟1+14

2 ∙14
𝑞(14)+

𝑟1−14

−2 ∙14
𝑞(−14)

≔ 𝐵(−9)

𝑟2+1

2
𝐵(1)+

𝑟2−1

−2
𝐵(-1)

𝑟2+9

2∙9
𝐵(9)+

𝑟2−9

−2∙9
𝐵(-9)



ZKP MOOC

▪ P may have “lied” at some step of the folding phase, by not performing the fold 
correctly.

▪ i.e., sending a vector that is not the prescribed folding of the previous vector. 

▪ To “artificially” reduce the degree of the (claimed) folded vector.

▪ V attempts to “detect” such inconsistencies during the query phase. 

Query phase: V picks about (λ/log ρ−1 ) entries of each folded vector and confirming 
each is the prescribed linear combination of the relevant two entries of the previous 
vector.  

The (interactive) low-degree test: Query Phase
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▪ P may have “lied” at some step of the folding phase, by not performing the fold 
correctly.

▪ i.e., sending a vector that is not the prescribed folding of the previous vector. 

▪ To “artificially” reduce the degree of the (claimed) folded vector.

▪ V attempts to “detect” such inconsistencies during the query phase. 
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Proof length: roughly (λ/log ρ−1 ) log n 2 hash values.  

The (interactive) low-degree test: Query Phase
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▪ P may have “lied” at some step of the folding phase, by not performing the fold 
correctly.

▪ i.e., sending a vector that is not the prescribed folding of the previous vector. 

▪ To “artificially” reduce the degree of the (claimed) folded vector.

▪ V attempts to “detect” such inconsistencies during the query phase. 

▪ Query phase: V picks about (λ/log ρ−1 ) entries of each folded vector and 
confirming each is the prescribed linear combination of the relevant two entries of 
the previous vector.  

▪ Proof length (and V time): roughly (𝝀/𝐥𝐨𝐠 𝝆−𝟏 ) 𝒍𝒐𝒈 𝒌 𝟐 hash evaluations.  

The (interactive) low-degree test: Query Phase
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Back to the folding 
phase: more details
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▪ Split 𝑞(𝑋) into “even and odd parts” in the following sense.

▪ 𝑞 𝑋 = 𝑞𝑒 𝑋2 + 𝑋 𝑞𝑜 𝑋2

▪ E.g., if 𝑞 𝑋 = 1 + 2𝑋 + 3𝑋2 + 4𝑋3.

▪ Then 𝑞𝑒 𝑋 = 1 + 3𝑋 and 𝑞𝑜 𝑋 = 2 + 4𝑋.

▪ Note that both 𝑞𝑒 and 𝑞𝑜 have (at most) half the degree of 𝑞.

▪ V picks a random field element 𝑟 and sends 𝑟 to P.

▪ The prescribed “folding” 𝑞 is: 𝑞𝑓𝑜𝑙𝑑 𝑍 = 𝑞𝑒 𝑍 + 𝑟𝑞𝑜(𝑍)

▪ Clearly deg(𝑞𝑓𝑜𝑙𝑑) is half the degree of 𝑞 itself. 

The (interactive) low-degree test: Folding Phase
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▪ Recall: 𝑞 𝑋 = 𝑞𝑒 𝑋2 + 𝑋 𝑞𝑜 𝑋2

▪ Recall: The prescribed “folding” 𝑞 is: 𝑞𝑓𝑜𝑙𝑑 𝑍 = 𝑞𝑒 𝑍 + 𝑟𝑞𝑜 𝑍 .

Fact: Let 𝑥 and −𝑥 be 𝑛′th roots of unity and 𝑧 = 𝑥2. Then:

𝑞𝑓𝑜𝑙𝑑 z =
𝑟+𝑥

2𝑥
𝑞 𝑥 +

𝑟−𝑥

−2𝑥
𝑞 −𝑥 .

Proof: Clearly 𝑞 𝑥 = 𝑞𝑒 𝑧 + 𝑥𝑞𝑜(𝑧).

In other words, if 𝑟 = 𝑥 then 𝑞𝑓𝑜𝑙𝑑 z = 𝑞 𝑥 .

Similarly, if 𝑟 = −𝑥 then 𝑞𝑓𝑜𝑙𝑑 z = 𝑞(−𝑥).

The fact follows because it gives a degree-1 function of 𝑟 with exactly this behavior at 
𝑟 = −𝑥 and 𝑟 = x, and any two degree-1 functions of 𝑟 that agree at two or more 
inputs must be the same function. 

The (interactive) low-degree test: Folding Phase
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The (interactive) low-degree test: Folding Phase
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▪ Recall: 𝑞 𝑋 = 𝑞𝑒 𝑋2 + 𝑋 𝑞𝑜 𝑋2

▪ Recall: The prescribed “folding” 𝑞 is: 𝑞𝑓𝑜𝑙𝑑 𝑍 = 𝑞𝑒 𝑍 + 𝑟𝑞𝑜 𝑍 .

▪ Fact: Let 𝑥 and −𝑥 be 𝑛′th roots of unity and 𝑧 = 𝑥2. Then:

𝑞𝑓𝑜𝑙𝑑 z =
𝑟+𝑥

2𝑥
𝑞 𝑥 +

𝑟−𝑥

−2𝑥
𝑞 −𝑥 .

▪ Proof: Clearly 𝑞 𝑥 = 𝑞𝑒 𝑧 + 𝑥𝑞𝑜(𝑧).

▪ In other words, if 𝑟 = 𝑥 then 𝑞𝑓𝑜𝑙𝑑 z = 𝑞 𝑥 .

▪ Similarly, if 𝑟 = −𝑥 then 𝑞𝑓𝑜𝑙𝑑 z = 𝑞(−𝑥).

The fact follows because it gives a degree-1 function of 𝑟 with exactly this behavior at 
𝑟 = −𝑥 and 𝑟 = x, and any two degree-1 functions of 𝑟 that agree at two or more 
inputs must be the same function. 

The (interactive) low-degree test: Folding Phase
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▪ Recall: 𝑞 𝑋 = 𝑞𝑒 𝑋2 + 𝑋 𝑞𝑜 𝑋2

▪ Recall: The prescribed “folding” 𝑞 is: 𝑞𝑓𝑜𝑙𝑑 𝑍 = 𝑞𝑒 𝑍 + 𝑟𝑞𝑜 𝑍 .

▪ Fact: Let 𝑥 and −𝑥 be 𝑛′th roots of unity and 𝑧 = 𝑥2. Then:

𝑞𝑓𝑜𝑙𝑑 z =
𝑟+𝑥

2𝑥
𝑞 𝑥 +

𝑟−𝑥

−2𝑥
𝑞 −𝑥 .

▪ Proof: Clearly 𝑞 𝑥 = 𝑞𝑒 𝑧 + 𝑥𝑞𝑜(𝑧).

▪ In other words, if 𝑟 = 𝑥 then 𝑞𝑓𝑜𝑙𝑑 z = 𝑞 𝑥 .

▪ Similarly, if 𝑟 = −𝑥 then 𝑞𝑓𝑜𝑙𝑑 z = 𝑞(−𝑥).

▪ The fact follows because it gives a degree-1 function of 𝑟 with exactly this behavior 
at 𝑟 = −𝑥 and 𝑟 = 𝑥, and any two degree-1 functions of 𝑟 that agree at two or 
more inputs must be the same function. 

The (interactive) low-degree test: Folding Phase
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Folding phase (committed degree-3 polynomial in 𝔽𝟒𝟏 𝑋 when 8 = 4ρ−1) 

𝑞(1) 𝑞(-1) q(9) q(-9) 𝑞(3) 𝑞(-3) q(14) q(-14)

𝑟1+1

2
𝑞(1)+

𝑟1−1

−2
𝑞(-1)

≔ 𝐵(1)

𝑟1+9

2∙9
𝑞(9)+

𝑟1−9

−2∙9
𝑞(-9)

≔ 𝐵(-1)

𝑟1+3

2∙3
𝑞(3)+

𝑟1−3

−2∙3
𝑞(-3)

≔ 𝐵(9)

𝑟1+14

2 ∙14
𝑞(14)+

𝑟1−14

−2 ∙14
𝑞(−14)

≔ 𝐵(−9)

𝑟2+1

2
𝐵(1)+

𝑟2−1

−2
𝐵(-1)

𝑟1+9

2∙9
𝐵(9)+

𝑟1−9

−2∙9
𝐵(-9)
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▪ Recall: 𝑞 𝑋 = 𝑞𝑒 𝑋2 + 𝑋 𝑞𝑜 𝑋2

▪ Recall: The prescribed “folding” 𝑞 is: 𝑞𝑓𝑜𝑙𝑑 𝑍 = 𝑞𝑒 𝑍 + 𝑟𝑞𝑜 𝑍 .

▪ The fact that the map 𝑥 ⟼ 𝑥2 is 2-to-1 on Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑛-1 } ensures that the 
relevant domain halves in size with each fold. 

▪ Other domains, like {0, 1, 2, … 𝑛 − 1}, don’t have this property. 

The (interactive) low-degree test: Folding Phase
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▪ Lecture 7 covered a variety of polynomial commitments (Ligero, Brakedown, Orion) that 
are similar to FRI.

▪ All use error-correcting codes.

▪ The only cryptography used is hashing (Merkle-hashing + Fiat-Shamir). 

The Lecture 7 schemes viewed a degree-𝑑 polynomial as 𝑑1/2 vectors each of length about 
𝑑1/2 and performed “a single random fold on all these vectors”.

This resulted in larger proofs (size roughly 𝑑1/2), but some advantages (e.g., linear-time 
prover, field-agnostic). 

FRI views a degree-𝑑 polynomial as a single vector of length O(𝑑) and “folds it in half” 

logarithmically many times, rather than performing a single fold of 𝑑1/2 vectors, each of 
length 𝑑1/2. 

Compare to Lecture 7
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▪ Lecture 7 covered a variety of polynomial commitments (Ligero, Brakedown, Orion) that 
are similar to FRI.

▪ All use error-correcting codes.

▪ The only cryptography used is hashing (Merkle-hashing + Fiat-Shamir). 

▪ The Lecture 7 schemes viewed a degree-𝑑 polynomial as 𝑑1/2 vectors each of length 
about 𝑑1/2 and performed “a single random fold on all these vectors”.

▪ This resulted in larger proofs (size roughly 𝑑1/2), but some advantages (e.g., linear-
time prover, field-agnostic). 

▪ Proof size can be reduced via SNARK composition (will be discussed in Lecture 10).

▪ FRI views a degree-𝑑 polynomial as a single vector of length O(𝑑) and “randomly folds it 
in half” logarithmically many times.

Compare to Lecture 7
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▪ Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector 𝑤
claimed to equal 𝑞’s evaluations over Ω.

▪ Here, Ω is the set of 𝑛’th roots of unity in 𝔽𝑝, where 𝑛 = ρ−1 𝑘.

▪ And 𝑞 is claimed to have degree less than 𝑘.

The security analysis
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▪ Let 𝛿 be the “relative Hamming distance” of 𝑞 from the closest polynomial ℎ of degree 𝑘 − 1.

▪ 𝛿 is the fraction of 𝑥 ∈ Ω such that ℎ 𝑥 ≠ 𝑞 𝑥 .

Claim: P “passes” all 𝑡 “FRI verifier queries” with probability at most 
𝑘

𝑝
+ (1 − 𝛿)𝑡.

Caveat: this is only known to hold for 𝛿 up to 1 − ρ1/2, but is conjectured to hold for 𝛿 up 

to 1 − ρ.

Most FRI deployments’ security are analyzed under this conjecture.

Informal interpretation: FRI V accepts with probability at most about (1 − 1 − ρ )𝑡= ρ𝑡.

In other words, each of the t queries contributes about Log2(1/ρ) “bits of security”. 

E.g., if ρ =
1

4
, each FRI verifier queries contributes about 2 bits of security.

At the cost of roughly log n 2 hash values included in the proof.

The security analysis
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▪ Let 𝛿 be the “relative Hamming distance” of 𝑞 from the closest polynomial ℎ of degree 𝑘 − 1.

▪ 𝛿 is the fraction of 𝑥 ∈ Ω such that ℎ 𝑥 ≠ 𝑞 𝑥 .

▪ Claim: P “passes” all 𝑡 “FRI verifier queries” with probability at most 
𝑘

𝑝
+ (1 − 𝛿)𝑡.

▪ Caveat: this is only known to hold for 𝛿 up to 1 − ρ1/2, but is conjectured to hold for 𝛿 up 

to 1 − ρ.

▪ Most FRI deployments’ security are analyzed under this conjecture.

▪ Informal interpretation: FRI V accepts with probability at most about (1 − 1 − ρ )𝑡= ρ𝑡.

▪ In other words, each of the 𝑡 queries contributes about Log2(1/ρ) “bits of security”. 

▪ E.g., if ρ =
1

4
, each FRI verifier queries contributes about 2 bits of security.

▪ At the cost of roughly log n 2 hash values included in the proof.
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▪ Let 𝛿 be the “relative Hamming distance” of 𝑞 from the closest polynomial ℎ of degree 𝑘 − 1.

▪ 𝛿 is the fraction of 𝑥 ∈ Ω such that ℎ 𝑥 ≠ 𝑞 𝑥 .

▪ Claim: P “passes” all 𝑡 “FRI verifier queries” with probability at most 
𝑘

𝑝
+ (1 − 𝛿)𝑡.

▪ Recall: 𝑞𝑓𝑜𝑙𝑑 𝑍 = 𝑞𝑒 𝑍 + 𝑟𝑞𝑜 𝑍 .

▪ Can check: since 𝑞 is 𝛿-far from every degree-(𝑘 − 1) polynomial ℎ,  at least one of 𝑞𝑒 or 
𝑞𝑜 must be 𝛿-far from every degree-(𝑘/2 − 1) polynomial over the (𝑛 /2)-roots of unity.

▪ Idea: A “random linear combination” of two functions, at least one of which is 𝛿-far from 
degree-d polynomials, will also be is 𝛿-far from degree-d with overwhelming probability. 

▪ The 
𝑘

𝑝
term bounds the probability that P “gets a lucky fold”.

▪ 𝑞𝑓𝑜𝑙𝑑 is close to degree-(𝑘/2 − 1) even though 𝑞 is not close to degree-(𝑘-1).

The security analysis
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▪ Let 𝛿 be the “relative Hamming distance” of 𝑞 from the closest polynomial ℎ of degree 𝑘 − 1.

▪ 𝛿 is the fraction of 𝑥 ∈ Ω such that ℎ x ≠ 𝑞 𝑥 .

▪ Claim: P “passes” all 𝑡 “FRI verifier queries” with probability at most 
𝑘

𝑝
+ (1 − 𝛿)𝑡.

▪ Idea 2: If P does “not get a lucky fold”, then the “true” final folded function is 𝛿-far from 
any degree-0 function.

▪ But P is forced to send a degree-0 function as the final fold.

▪ So at least one “fold” is done dishonestly by P.

▪ In this case, each “FRI verifier query” detects a discrepancy in a fold with probability at 
least 𝛿.

▪ So all FRI verifier queries fail to detect the discrepancy with probability at most (1 − 𝛿)𝑡.

The security analysis
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▪ Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector 𝑤
claimed to equal 𝑞’s evaluations over Ω.

▪ Here, Ω is the set of 𝑛’th roots of unity in 𝔽𝑝, where 𝑛 = ρ−1 𝑘.

▪ And 𝑞 is claimed to have degree less than 𝑘. 

▪ The following P strategy works for any 𝑞 (even ones maximally far from degree-𝑘) and 
passes all FRI verifier checks with probability ρ𝑡.

P picks a set 𝑇 of 𝑘 = ρ𝑛 elements of Ω and computes a polynomial 𝑠 of degree 𝑘 − 1 that 
agrees with 𝑞 at those points.

P folds 𝑠 rather than 𝑞 during the folding phase.

All 𝑡 FRI verifier queries lie in 𝑇 with probability ρ𝑡.

The known attack
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▪ Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector 𝑤
claimed to equal 𝑞’s evaluations over Ω.

▪ Here, Ω is the set of 𝑛’th roots of unity in 𝔽𝑝, where 𝑛 = ρ−1 𝑘.

▪ And 𝑞 is claimed to have degree less than 𝑘. 

▪ The following P strategy works for any 𝑞 (even ones maximally far from degree-𝑘) and 
passes all FRI verifier checks with probability ρ𝑡.

▪ P picks a set 𝑇 of 𝑘 = ρ𝑛 elements of Ω and computes a polynomial 𝑠 of degree 𝑘 − 1
that agrees with 𝑞 at those points.

▪ P folds 𝑠 rather than 𝑞 during the folding phase.

▪ All 𝑡 FRI verifier queries lie in 𝑇 with probability ρ𝑡.

The known attack



Credit: Faithie/Shutterstock

ZKP MOOC

Polynomial Commitment 
from FRI



ZKP MOOC

▪ P Merkle-commits to all evaluations of the polynomial 𝑞.
▪ When V requests 𝑞 𝑟 , P reveals the associated leaf along with 

opening information.
▪ New Problems with FRI: 

▪ P has only Merkle-committed to evaluations of 𝑞 over domain Ω, 
not the whole field.

▪ V only knows that 𝑞 is ”not too far” from low-degree, not exactly 
low-degree.

Two problems:

Recall: Initial Attempt from Lecture 4
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▪ Recall the following FACT used in KZG commitments:

▪ FACT: For any degree-d univariate polynomial 𝑞, the assertion “𝑞 𝑟 = 𝑣” is 
equivalent to the existence of a polynomial 𝑤 of degree at most 𝑑 such that 

▪ 𝑞 𝑋 − 𝑣 = 𝑤 𝑋 𝑋 − 𝑟 .

▪ So to confirm that 𝒒 𝒓 = 𝒗, V applies FRI’s fold+query procedure to the function 
(𝒒 𝑿 − 𝒗) (𝑿 − 𝒓)−𝟏 using degree bound 𝒅 − 𝟏. 

Whenever the FRI verifier queries this function at a point in, the evaluation can be 
obtained with one query to 𝑞 at the same point. 

Can show: To pass V’s checks in this polynomial commitment with noticeable 
probability, 𝑣 has to equal h 𝑟 , where h is the degree-d polynomial that is closest to q. 

A fix for both problems
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▪ Recall the following FACT used in KZG commitments:

▪ FACT: For any degree-d univariate polynomial 𝑞, the assertion “𝑞 𝑟 = 𝑣” is 
equivalent to the existence of a polynomial 𝑤 of degree at most 𝑑 such that 
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be obtained with one query to 𝑞 at the same point. 

▪ Can show: To pass V’s checks in this polynomial commitment with noticeable 
probability, 𝑣 has to equal ℎ 𝑟 , where ℎ is the degree-d polynomial that is closest to 
q. 

A fix for both problems
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▪ Recall the following FACT used in KZG commitments:

▪ FACT: For any degree-d univariate polynomial 𝑞, the assertion “𝑞 𝑟 = 𝑣” is 
equivalent to the existence of a polynomial 𝑤 of degree at most 𝑑 such that 

▪ 𝑞 𝑋 − 𝑣 = 𝑤 𝑋 𝑋 − 𝑟 .

▪ So to confirm that 𝒒 𝒓 = 𝒗, V applies FRI’s fold+query procedure to the function 
(𝒒 𝑿 − 𝒗) (𝑿 − 𝒓)−𝟏 using degree bound 𝒅 − 𝟏. 

▪ Whenever the FRI verifier queries this function at a point in Ω, the evaluation can 
be obtained with one query to 𝑞 at the same point. 

▪ Caveat: The security analysis requires 𝛿 to be (at most) (1 − ρ)/2. Each FRI verifier 
queries brings (less than) 1 bit of security, not log2(1/ρ) bits.

A fix for both problems
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▪ Recall the following FACT used in KZG commitments:

▪ FACT: For any degree-d univariate polynomial 𝑞, the assertion “𝑞 𝑟 = 𝑣” is 
equivalent to the existence of a polynomial 𝑤 of degree at most 𝑑 such that 

▪ 𝑞 𝑋 − 𝑣 = 𝑤 𝑋 𝑋 − 𝑟 .

▪ So to confirm that 𝒒 𝒓 = 𝒗, V applies FRI’s fold+query procedure to the function 
(𝒒 𝑿 − 𝒗) (𝑿 − 𝒓)−𝟏 using degree bound 𝒅 − 𝟏. 

▪ Whenever the FRI verifier queries this function at a point in Ω, the evaluation can 
be obtained with one query to 𝑞 at the same point. 

▪ People are using FRI today as a weaker primitive than a polynomial commitment, 
which still suffices for SNARK security.

▪ P is bound to a “small set” of low-degree polynomials rather than to a single one.  

A fix for both problems
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Recall: Fiat-Shamir transformation

FS in ROM

Random Oracle 

Public-Coin
Interactive Protocol

Non-Interactive
Argument

Figure 5.2: Depiction of theFiat-Shamir transformation applied to a3-message interactiveproof or argument as in the

proof of Theorem 5.1. Image courtesy of Ron Rothblum [Rot19].

prover executing agrinding attack on thenon-interactiveargument only needs to try about 260 first messages

a before it finds one such that R(x,a ) is “ lucky” . When instantiating the Fiat-Shamir transformation with

a concrete hash function, the computational bottleneck in this attack may be simply performing 260 hash

evaluations. This number of hash evaluations is entirely feasible for modern computers.70 Indeed, in 2020,

the cost of computing just shy of 264 SHA-1 evaluations using GPUs was $45,000 [LP20]. As another data

point, as of 2022, bitcoin’s network hash rate was about 264 hash evaluations per second, meaning bitcoin

miners as a whole were performing 280 SHA-256 evaluations every 18 hours. Of course, this very large

number of hashes is due to vast investment in ASICs for bitcoin mining.

In summary, if one is applying the Fiat-Shamir transformation to render an interactive protocol non-

interactive, the interactive protocol should be configured to well over 80 bits of statistical or interactive

security if one wishes to ensure that the canonical grinding attack on the resulting non-interactive protocol

isout of the reach of modern hardware.

5.3.2 Soundness in the Random Oracle Model for Constant-Round Protocols

Theorem 5.1. Let I be a constant-round public-coin IP or argument with negligible soundness error, and

let Q be the non-interactive protocol in the random oracle model obtained by applying the Fiat-Shamir

transformation to I . Then Q has negligible computational soundness error. That is, no prover running in

polynomial time can convince theverifier in Q of a false statement with non-negligible probability.

Proof. For simplicity, we will only prove the result in the case where I is a 3-message protocol where the

prover speaks first. See Figure 5.2 for a depiction of the Fiat-Shamir transformation in this setting and the

notation wewill useduring the proof.

We will show that, for any input x, if PF S is a prover that runs in time T and convinces the verifier

in Q to accept on input x with probability at least e (where the probability is over the choice of random

oracle), then there is a prover P⇤ for I that convinces the verifier in I to accept with probability at least

e⇤≥ W(e/ T) (where the probability is over the choice of the verifier’s random challenges in I ). Moreover,

P⇤has essentially the same runtime as PF S. The theorem follows, because if e is non-negligible and T is

polynomial in the size of the input, then e⇤is non-negligible as well.

70More precisely, a grinding attack that tries T < 260 different values of a succeeds with probability roughly T ·2− 60. This

matchesthelower bound shown in theproof of Theorem 5.1. Specifically, Theorem 5.1 showsthat if theFiat-Shamir transformation

is applied to a 3-message interactive protocol with statistical soundness error 2− 60, then any attack on the Fiat-Shamir-ed protocol

that treats the hash function as a random oracle, runs in time at most T, and succeeds with probability e must satisfy e/ T < 2− 60.

81
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a before it finds one such that R(x,a ) is “ lucky” . When instantiating the Fiat-Shamir transformation with

a concrete hash function, the computational bottleneck in this attack may be simply performing 260 hash

evaluations. This number of hash evaluations is entirely feasible for modern computers.70 Indeed, in 2020,

the cost of computing just shy of 264 SHA-1 evaluations using GPUs was $45,000 [LP20]. As another data

point, as of 2022, bitcoin’s network hash rate was about 264 hash evaluations per second, meaning bitcoin

miners as a whole were performing 280 SHA-256 evaluations every 18 hours. Of course, this very large

number of hashes is due to vast investment in ASICs for bitcoin mining.

In summary, if one is applying the Fiat-Shamir transformation to render an interactive protocol non-

interactive, the interactive protocol should be configured to well over 80 bits of statistical or interactive

security if one wishes to ensure that the canonical grinding attack on the resulting non-interactive protocol

isout of the reach of modern hardware.

5.3.2 Soundness in the Random Oracle Model for Constant-Round Protocols

Theorem 5.1. Let I be a constant-round public-coin IP or argument with negligible soundness error, and

let Q be the non-interactive protocol in the random oracle model obtained by applying the Fiat-Shamir

transformation to I . Then Q has negligible computational soundness error. That is, no prover running in

polynomial time can convince theverifier in Q of a false statement with non-negligible probability.

Proof. For simplicity, we will only prove the result in the case where I is a 3-message protocol where the

prover speaks first. See Figure 5.2 for a depiction of the Fiat-Shamir transformation in this setting and the

notation wewill useduring the proof.

We will show that, for any input x, if PF S is a prover that runs in time T and convinces the verifier

in Q to accept on input x with probability at least e (where the probability is over the choice of random

oracle), then there is a prover P⇤ for I that convinces the verifier in I to accept with probability at least

e⇤≥ W(e/ T) (where the probability is over the choice of the verifier’s random challenges in I ). Moreover,

P⇤has essentially the same runtime as PF S. The theorem follows, because if e is non-negligible and T is

polynomial in the size of the input, then e⇤is non-negligible as well.

70More precisely, a grinding attack that tries T < 260 different values of a succeeds with probability roughly T ·2− 60. This

matchesthelower bound shown in theproof of Theorem 5.1. Specifically, Theorem 5.1 showsthat if theFiat-Shamir transformation

is applied to a 3-message interactive protocol with statistical soundness error 2− 60, then any attack on the Fiat-Shamir-ed protocol

that treats the hash function as a random oracle, runs in time at most T, and succeeds with probability e must satisfy e/ T < 2− 60.
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Grinding attack on Fiat-Shamir:
• PFS iterates over first-messages 𝛼 until it finds one such that 𝑅(𝑥, 𝛼) is “lucky”
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Grinding attack on Fiat-Shamir:
• PFS iterates over first-messages 𝛼 until it finds one such that 𝑅(𝑥, 𝛼) is “lucky”

• Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of 
statistical security (soundness error 2−80).

• With 2𝑏 hash evaluations, grinding attack will succeed with probability 
2−80+𝑏.
• E.g., with 270 hashes, successfully attack with probability about 2−10.
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Grinding attack on Fiat-Shamir:
• PFS iterates over first-messages 𝛼 until it finds one such that 𝑅(𝑥, 𝛼) is “lucky”

• Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of 
statistical security (soundness error 2−80).

• With 2𝑏 hash evaluations, grinding attack will succeed with probability 
2−80+𝑏.
• E.g., with 270 hashes, successfully attack with probability about 2−10.

Comparison: 
For a collision-resistant hash function (CRHF) configured to 80 bits of security, 
the fastest collision-finding procedure should be a birthday attack. 
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Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:
• PFS iterates over first-messages 𝛼 until it finds one such that 𝑅(𝑥, 𝛼) is “lucky”

• Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of 
statistical security (soundness error 2−80).

• With 2𝑏 hash evaluations, grinding attack will succeed with probability 
2−80+𝑏.
• E.g., with 270 hashes, successfully attack with probability about 2−10.

Comparison: 
With 2k hash evaluations,  finds a collision with a probability of only 22k-160.
For example, 270 hash evaluations will yield a collision with a probability of 
𝟐−𝟐𝟎.



1. Today, the bitcoin network performs 280 SHA-256 
hashes roughly every hour.
▪ At current prices, those hashes typically earn less 

than $1 million worth of block rewards. 

In January 2020, the cost of computing just shy of 
264 SHA-1 evaluations using GPUs was $45,000.

This puts 270 hashes at about $3,000,000.
Likely less today, post-Ethereum-merge.

How many hashes are feasible today?



1. Today, the bitcoin network performs 280 SHA-256 
hashes roughly every hour.
▪ At current prices, those hashes typically earn less 

than $1 million worth of block rewards. 

2. In January 2020, the cost of computing just shy of 
264 SHA-1 evaluations using GPUs was $45,000.

▪ This puts 270 hashes at about $3,000,000.
▪ Likely less today, post-Ethereum-merge.

How many hashes are feasible today?
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Interactive vs. Non-
Interactive Security



▪ A polynomial commitment scheme such as FRI, when run interactively at “𝜆
bits of security”, has the following security guarantee

▪ Assuming P cannot find a collision in the hash function used to build 
Merkle trees, a lying P cannot pass the verifier’s checks with probability 

better than 2−𝜆.

▪ A lying P must actually interact with V to learn V’s challenges, in order to 
find out if it receives a “lucky” challenge!

Interactive Security



▪ For example, if 𝜆 = 60, then with probability at least 1- 2−30, V will reject (at 
least) 230 times before a lying P succeeds in convincing V to accept. 

▪ It seems unlikely that V would continue interacting with a P that has been 
caught in a lie 230 times. 

▪ In many settings, interactive with V may take long enough that P wouldn’t 
have time to make 1 billion attempts even if V were willing to consider 
each one.

▪ E.g., One billion Ethereum blocks take 3 years to create (at one block 
per 12 seconds). 

Interactive Security



▪ Suppose Fiat-Shamir is applied to an interactive protocol such as FRI that was run 
at 𝜆 bits of interactive security.

▪ The resulting non-interactive protocol has the following much weaker 
guarantee:

▪ A lying P willing to perform 2𝑘 hash evaluations can successfully attack the 
protocol with probability 2𝑘−𝜆 . 

▪ A lying P can attempt the attack “silently”.
▪ Unlike in the interactive case, P can perform a ”grinding attack” without 

interacting with V until P receives a lucky challenge.
Much higher security levels 𝜆 are necessary in this setting. 

60 bits of interactive security is fine in many contexts.
60 bits of non-interactive security is not okay unless the payoff of a successful 
attack is minimal.

Non-interactive security 
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▪ The resulting non-interactive protocol has the following much weaker 
guarantee:

▪ A lying P willing to perform 2𝑘 hash evaluations can successfully attack the 
protocol with probability 2𝑘−𝜆 . 

▪ A lying P can attempt the attack “silently”.
▪ Unlike in the interactive case, P can perform a ”grinding attack” without 

interacting with V until P receives a lucky challenge.
▪ Higher security levels 𝜆 are necessary in this setting. 

▪ 60 bits of interactive security is fine in many contexts.
▪ 60 bits of non-interactive security is not okay unless the payoff of a 

successful attack is minimal.

Non-interactive security 
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Fiat-Shamir security loss 
for many-round 

protocols can be huge



▪ Consider the following (silly) interactive protocol for the empty language (i.e., 
V should always reject). 

▪ P sends a message (a nonce) which V ignores. 

▪ V tosses a random coin, rejecting if it comes up heads and accepting if it 
comes up tails.

▪ The soundness error of this protocol is 1/2.

▪ If you sequentially repeat it 𝜆 times and accept only if every run accepts, the 

soundness error falls to 1/2𝜆.

An interactive protocol



▪ Recall: If you sequentially repeat it 𝜆 times and accept only if every run 

accepts, the soundness error falls to 1/2𝜆.

▪ Consider Fiat-Shamir-ing this 𝜆-round protocol to render it non-interactive.

▪ A cheating prover PFS can find a convincing “proof” for the non-interactive 
protocol with O(𝜆) hash evaluations.

Idea: PFS grinds on the first repetition alone (i.e., iterate over nonces in the 
first repetition until one is found that hashes to tails. This requires 2 attempts in 
expectation until success.) Fix this first nonce m1 for the remainder of the 
attack.

Then PFS  grinds on the second repetition alone until it finds an m2 such that 
(m1, m2) hashes to tails. Fix m2 for the remainder of the attack.

Then PFS   egrinds on the third repetition, a d so on.

Fiat-Shamir-ing this interactive protocol is insecure



▪ Recall: If you sequentially repeat it 𝜆 times and accept only if every run 

accepts, the soundness error falls to 1/2𝜆.

▪ Consider Fiat-Shamir-ing this 𝜆-round protocol to render it non-interactive.

▪ A cheating prover PFS can find a convincing “proof” for the non-interactive 
protocol with O(𝜆) hash evaluations.

▪ Idea: PFS grinds on the first repetition alone (i.e., iterate over nonces in 
the first repetition until one is found that hashes to tails. This requires 2 
attempts in expectation until success.) Fix this first nonce m1 for the 
remainder of the attack.

Then PFS  grinds on the second repetition alone until it finds an m2 such that 
(m1, m2) hashes to tails. Fix m2 for the remainder of the attack.

Then PFS   grinds on the third repetition, and so on.

Fiat-Shamir-ing this interactive protocol is insecure



▪ Recall: If you sequentially repeat it 𝜆 times and accept only if every run 

accepts, the soundness error falls to 1/2𝜆.

▪ Consider Fiat-Shamir-ing this 𝜆-round protocol to render it non-interactive.

▪ A cheating prover PFS can find a convincing “proof” for the non-interactive 
protocol with O(𝜆) hash evaluations.

▪ Idea: PFS grinds on the first repetition alone (i.e., iterate over nonces in 
the first repetition until one is found that hashes to tails. This requires 2 
attempts in expectation until success.) Fix this first nonce m1 for the 
remainder of the attack.

▪ Then PFS grinds on the second repetition alone until it finds an m2 such 
that (m1, m2) hashes to tails. Fix m2 for the remainder of the attack.

▪ Then PFS grinds on the third repetition, and so on.

Fiat-Shamir-ing this interactive protocol is insecure



▪ Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge 
loss in security, whereby the resulting non-interactive protocol is totally 
insecure.

Fortunately, this security loss can be ruled out if the interactive protocol satisfies a 
stronger notion of soundness called round-by-round soundness.

FRI is a logarithmic-round interactive protocol that is always deployed non-
interactively today.

It has not been shown to be round-by-round sound. 

SNARK designers applying Fiat-Shamir to interactive protocols with more than 3 
messages should show that the protocol is round-by-round sound if they want to 
rule out a major security loss.

The takeaway
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▪ Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge 
loss in security, whereby the resulting non-interactive protocol is totally 
insecure.

▪ Fortunately, this security loss can be ruled out if the interactive protocol 
satisfies a stronger notion of soundness called round-by-round soundness.

▪ This means an attacker in the interactive protocol has to “get very lucky all at once” 
(in a single round)… it can’t succeed by getting “a little bit lucky many times”.

▪ The sequential repetition of soundness error 1/2 is not round-by-round sound.

▪ The attacker can “get a little lucky” each round and succeed (i.e., in each round with 
probability 1/2 it gets the “lucky” challenge Tails each round).

▪ The sum-check protocol (Lecture 4) is an example of a logarithmic-round protocol 
that is known to be round-by-round sound. 

▪ Something analogous is known for Bulletproofs [AFK22, Wik21]. 

The takeaway
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▪ Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge 
loss in security, whereby the resulting non-interactive protocol is totally 
insecure.

▪ Fortunately, this security loss can be ruled out if the interactive protocol 
satisfies a stronger notion of soundness called round-by-round soundness.

▪ FRI is a logarithmic-round interactive protocol that is always deployed non-
interactively today.

▪ It has not been shown to be round-by-round sound. 

▪ SNARK designers applying Fiat-Shamir to interactive protocols with more than 
3 messages should show that the protocol is round-by-round sound if they 
want to rule out a major security loss.

The takeaway
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END OF LECTURE

Next lecture:
SNARKs from Linear PCPs
(e.g., Groth16)
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Example: Reed-Solomon encoding of a vector over 𝔽11.
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FRI (citation)

1. Recall from Lecture 5: n’th roots of unity

Let 𝜔 ∈ 𝔽𝑝 be a primitive 𝑘-th root of unity (so that  𝜔𝑘 = 1). 

▪ if  Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 } ⊆ 𝔽𝑝 then   𝑍Ω 𝑋 = 𝑋𝑘 − 1


