Zero Knowledge Proofs

FRI-based Polynomial Commitments and Fiat-Shamir

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

Let's build an efficient SNARK

- P's first message in the protocol is a **polynomial** h.
 - V does **not** learn *h* in full.
 - The description size of h is as large as the circuit.
 - Rather, V is permitted to evaluate h at, say, one point.
 - After that, P and V execute a standard interactive proof.

Recall: What is a Polynomial Commitment Scheme?

- High-level idea:
 - P binds itself to a polynomial h by sending a short string Com(h).
 - V can choose x and ask P to evaluate h(x).
 - P sends y, the purported evaluation, plus a proof π that y is consistent with Com(h) and x.
- Goals:
 - P cannot produce a convincing proof for an incorrect evaluation.
 - Com(h) and π are short and easy to generate; π is easy to check.

A Zoo of SNARKs

- There are several different polynomial IOPs in the literature.
- And several different polynomial commitments.
- Can mix-and-match to get different tradeoffs between P time, proof size, setup assumptions, etc.
 - Transparency and plausible post-quantum security determined entirely by the polynomial commitment scheme used.

Polynomial IOPs: Three classes

- 1. Based on interactive proofs (IPs).
- 2. Based on multi-prover interactive proofs (MIPs).
- 3. Based on constant-round polynomial IOPs.
 - Examples: Marlin, PlonK.
- Above SNARKs roughly listed in increasing order of P costs and decreasing order of proof length and V cost.
- Categories 1 and 2 covered in Lecture 4, Category 3 (PlonK) in Lecture 5.

Polynomial commitments: Three classes

- 1. Based on pairings + trusted setup (not transparent nor post-quantum).
 - e.g., **KZG10** (Lecture 5 + 6).
 - Unique property: constant sized evaluation proofs.
- 2. Based on discrete logarithm (transparent, **not** post-quantum).
 - Examples: IPA/Bulletproofs (Lecture 6), Hyrax, Dory.
- 3. Based on IOPs + hashing (transparent and post-quantum)
 - e.g., **FRI** (will be covered today), Ligero, Brakedown, Orion (Lecture 7).

Polynomial commitments: Three classes

- 1. Based on pairings + trusted setup (not transparent nor post-quantum).
 - e.g., **KZG10** (Lecture 5 + 6).
 - Unique property: constant sized evaluation proofs.
- 2. Based on discrete logarithm (transparent, **not** post-quantum).
 - Examples: IPA/Bulletproofs (Lecture 6), Hyrax, Dory.
 - Classes 1. and 2. are homomorphic.
 - Leads to efficient batching/amortization of P and V costs (e.g., when proving knowledge of several different witnesses).

Some specimens from the zoo

Highlights of SNARK Taxonomy: Transparent SNARKs

- 1. [Any polynomial IOP] + IPA/Bulletproofs polynomial commitment.
 - Ex: Halo2-ZCash
 - Pros: Shortest proofs among transparent SNARKs.
 - Cons: Slow V

Highlights of SNARK Taxonomy: Transparent SNARKs

- 2. [Any polynomial IOP] + FRI polynomial commitment.
 - Ex: STARKs, Fractal, Aurora, Virgo, Ligero++
 - Pros: Shortest proofs amongst plausibly post-quantum SNARKs.
 - Cons: Proofs are large (100s of KBs depending on security)

Highlights of SNARK Taxonomy: Transparent SNARKs

- 3. MIPs and IPs + [fast-prover polynomial commitments].
 - Ex: Spartan, Brakedown, Orion, Orion+.
 - Pros: Fastest P in the literature, plausibly post-quantum + transparent if polynomial commitment is.
 - Cons: Bigger proofs than 1. and 2. above.

Highlights of SNARK Taxonomy: Non-transparent SNARKS

1. Linear-PCP based:

- Ex: Groth16
- Pros: Shortest proofs (3 group elements), fastest V.
- Cons: Circuit-specific trusted setup, slow and space-intensive P, not postquantum

Highlights of SNARK Taxonomy: Non-transparent SNARKS

- 2. Constant-round polynomial IOP + KZG polynomial commitment:
 - Ex: Marlin-KZG, PlonK-KZG
 - Pros: Universal trusted setup.
 - Cons: Proofs are ~4x-6x larger than Groth16, P is slower than Groth16, also not post-quantum.
 - Counterpoint for P: can use more flexible intermediate representations than circuits and R1CS.

FRI (Univariate) Polynomial Commitment

- 1. Let q be a degree-(k-1) polynomial over field \mathbb{F}_p .
 - E.g., k = 5 and $q(X) = 1 + 2X + 4X^2 + X^4$
- 2. Want P to succinctly commit to q, later reveal q(r) for an $r \in \mathbb{F}_p$ chosen by V.
 - Along with associated "evaluation proof".

Recall: Initial Attempt from Lecture 4

- P Merkle-commits to all evaluations of the polynomial q.
- When V requests q(r), P reveals the associated leaf along with opening information.

Recall: Initial Attempt from Lecture 4

- P Merkle-commits to all evaluations of the polynomial q.
- When V requests q(r), P reveals the associated leaf along with opening information.
- Two problems:
- 1. The number of leaves is $|\mathbb{F}|$, which means the time to compute the commitment is at least $|\mathbb{F}|$.
 - Big problem when working over large fields (say, $|\mathbb{F}| \approx 2^{64}$ or $|\mathbb{F}| \approx 2^{128}$).
 - Want time proportional to the degree bound *d*.
- 2. V does not know if f has degree at most k!

 Rather than P Merkle-committing to all (p - 1) evaluations of q, P only Merkle-commits to evaluations q(x) for those x in a carefully chosen subset Ω of F_p.

- Rather than P Merkle-committing to all (p 1) evaluations of q, P only Merkle-commits to evaluations q(x) for those x in a carefully chosen subset Ω of F_p.
- Ω has size $\rho^{-1} k$ for some constant $\rho \leq 1/2$, where k is the degree of q.
 - $\rho^{-1} \ge 2$ is called the "FRI blowup factor".
 - ρ is called the "rate of the Reed-Solomon code" used.

- Rather than P Merkle-committing to all (p 1) evaluations of q, P only Merkle-commits to evaluations q(x) for those x in a carefully chosen subset Ω of F_p.
- Ω has size $\rho^{-1} k$ for some constant $\rho \leq 1/2$, where k is the degree of q.
 - $\rho^{-1} \ge 2$ is called the "FRI blowup factor".
- Strong tension between P time and verification costs:
 - The bigger the blowup factor, the slower P is, because it has to evaluate q on more inputs and Merkle-hash the results.
 - But the smaller the verification costs will be.

- Rather than P Merkle-committing to all (p 1) evaluations of q, P only Merkle-commits to evaluations q(x) for those x in a carefully chosen subset Ω of F_p.
- Ω has size $\rho^{-1} k$ for some constant $\rho \leq 1/2$, where k is the degree of q.
 - $\rho^{-1} \ge 2$ is called the "FRI blowup factor".
- Strong tension between P time and verification costs:
 - The bigger the blowup factor, the slower P is, because it has to evaluate q on more inputs and Merkle-hash the results.
 - Proof length will be about $(\lambda/\log (\rho^{-1})) \cdot \log^2(k)$ hash values.
 - λ is the security parameter a.k.a. " λ bits of security" (more on this later)

- Let $n = \rho^{-1} k$. Assume *n* is a power of 2.
- The key subset Ω comprises all *n*th roots of unity in \mathbb{F}_p .
 - x such that $x^n = 1$. Equivalently, $x^n 1 = 0$.

Roots of Unity visualized

ZKP MOOC

Fact: Let ω ∈ F_p be a *primitive* n'th root of unity. That is, n is the smallest integer such that ωⁿ = 1. Then Ω = { 1, ω, ω², ..., ωⁿ⁻¹ }.

- Fact: Let ω ∈ F_p be a *primitive* n'th root of unity. That is, n is the smallest integer such that ωⁿ = 1. Then Ω = { 1, ω, ω², ..., ωⁿ⁻¹ }.
- Fact: Ω is a "multiplicative subgroup" of \mathbb{F}_p .
 - If x and y are both n'th roots of unity, then so is xy.
 - Special case 1 (since *n* is even): If *x* is a *n*'th root of unity, x^2 is a (n/2)'th root of unity.
 - Special case 2 (since *n* is even): if *x* is a *n*'th root of unity, so is -x.

- Fact: Let ω ∈ F_p be a *primitive* n'th root of unity. That is, n is the smallest integer such that ωⁿ = 1. Then Ω = { 1, ω, ω², ..., ωⁿ⁻¹ }.
- Fact: Ω is a "multiplicative subgroup" of \mathbb{F}_p .
 - If x and y are both n'th roots of unity, then so is xy.
 - Special case 1 (since *n* is even): If *x* is a *n*'th root of unity, x^2 is a (n/2)'th root of unity.
 - Special case 2 (since *n* is even): if *x* is a *n*'th root of unity, so is -x.
- Fact: Ω has size n if and only if n divides p-1.

- Fact: Let ω ∈ F_p be a *primitive* n'th root of unity. That is, n is the smallest integer such that ωⁿ = 1. Then Ω = { 1, ω, ω², ..., ωⁿ⁻¹ }.
- Fact: Ω is a "multiplicative subgroup" of \mathbb{F}_p .
 - If x and y are both n'th roots of unity, then so is xy.
 - Special case 1 (since *n* is even): If *x* is a *n*'th root of unity, x^2 is a (n/2)'th root of unity.
 - Special case 2 (since *n* is even): if *x* is a *n*'th root of unity, so is -x.
- Fact: Ω has size n if and only if n divides p 1.
 - This is why many FRI-based SNARKs work over fields like \mathbb{F}_p with $p = 2^{64} 2^{32} + 1$
 - p-1 is divisible by 2^{32} .
 - Running FRI over the field can support any power-of-two value of n up to 2^{32} .

Roots of Unity: finite field example

- Consider the prime field \mathbb{F}_{41} of size 41.
- 1st roots of unity: {1}
- 2nd roots of unity: {1, -1}
- 4th roots of unity: {1, -1, 9, -9}.
- 8th roots of unity: {1, -1, 9, -9, 3, -3, 14, -14}

FRI commitment to a univariate q(X) in $\mathbb{F}_{41}[X]$ when $8 = \rho^{-1} k$

ZKP MOOC

Fixing the second problem

- V needs to know that the committed vector is all evaluations over domain Ω of some degree-(k - 1) polynomial.
- Idea from the PCP literature: V "inspects" only a few entries of the vector to "get a sense" of whether it is low-degree.
 - Each query will add a Merkle-authentication path (i.e., log(n) hash values) to the proof.
- This turns out to be impractical.
 - Instead, the FRI "low-degree test" will be interactive.
 - The test will consist of a "folding phase" followed by a "query phase".
 - The folding phase is log(k) rounds. The query phase is one round.

The (interactive) low-degree test: Folding Phase

- Folding Phase:
 - "Randomly fold the committed vector in half".
 - This means pair up entries of the committed vector, have V pick a random field element r, and use r to "randomly combine" every two paired up entries.
 - This halves the length of the vector.
 - Have P Merkle-commit to the folded vector.

The (interactive) low-degree test: Folding Phase

- Folding Phase:
 - "Randomly fold the committed vector in half".
 - This means pair up entries of the committed vector, have V pick a random field element r, and use r to "randomly combine" every two paired up entries.
 - This halves the length of the vector.
 - Have P Merkle-commit to the folded vector.
 - The random combining technique is chosen so that the folded vector will have half the degree of the original vector.
 - Repeat the folding until the degree should fall to 0.
 - At this point, the length of the folded vector is still ρ⁻¹ ≥ 2. But since the degree should be 0, P can specify the folded vector with a single field element.

Folding phase (committed degree-3 polynomial in $\mathbb{F}_{41}[X]$ when $8 = 4\rho^{-1}$)

ZKP MOOC

The (interactive) low-degree test: Query Phase

- P may have "lied" at some step of the folding phase, by not performing the fold correctly.
 - i.e., sending a vector that is **not** the prescribed folding of the previous vector.
 - To "artificially" reduce the degree of the (claimed) folded vector.
- V attempts to "detect" such inconsistencies during the query phase.

The (interactive) low-degree test: Query Phase

- P may have "lied" at some step of the folding phase, by not performing the fold correctly.
 - i.e., sending a vector that is **not** the prescribed folding of the previous vector.
 - To "artificially" reduce the degree of the (claimed) folded vector.
- V attempts to "detect" such inconsistencies during the query phase.
- Query phase: V picks about (λ/log(ρ⁻¹)) entries of each folded vector and confirming each is the prescribed linear combination of the relevant two entries of the previous vector.

The (interactive) low-degree test: Query Phase

- P may have "lied" at some step of the folding phase, by not performing the fold correctly.
 - i.e., sending a vector that is **not** the prescribed folding of the previous vector.
 - To "artificially" reduce the degree of the (claimed) folded vector.
- V attempts to "detect" such inconsistencies during the query phase.
- Query phase: V picks about (λ/log(ρ⁻¹)) entries of each folded vector and confirming each is the prescribed linear combination of the relevant two entries of the previous vector.
- Proof length (and V time): roughly $(\lambda/\log(\rho^{-1})) \log(k)^2$ hash evaluations.

Back to the folding phase: more details

- Split q(X) into "even and odd parts" in the following sense.
 - $q(X) = q_e(X^2) + X q_o(X^2)$
 - E.g., if $q(X) = 1 + 2X + 3X^2 + 4X^3$.
 - Then $q_e(X) = 1 + 3X$ and $q_o(X) = 2 + 4X$.
 - Note that both q_e and q_o have (at most) half the degree of q.
- V picks a random field element r and sends r to P.
- The prescribed "folding" q is: $q_{fold}(Z) = q_e(Z) + rq_o(Z)$
- Clearly deg(q_{fold}) is half the degree of q itself.

- Recall: $q(X) = q_e(X^2) + X q_o(X^2)$
- Recall: The prescribed "folding" q is: $q_{fold}(Z) = q_e(Z) + rq_o(Z)$.

- Recall: $q(X) = q_e(X^2) + X q_o(X^2)$
- Recall: The prescribed "folding" q is: $q_{fold}(Z) = q_e(Z) + rq_o(Z)$.
- Fact: Let x and -x be n'th roots of unity and $z = x^2$. Then:

$$q_{fold}(z) = \frac{(r+x)}{2x}q(x) + \frac{(r-x)}{-2x}q(-x).$$

- Recall: $q(X) = q_e(X^2) + X q_o(X^2)$
- Recall: The prescribed "folding" q is: $q_{fold}(Z) = q_e(Z) + rq_o(Z)$.
- Fact: Let x and -x be n'th roots of unity and $z = x^2$. Then:

$$q_{fold}(z) = \frac{(r+x)}{2x}q(x) + \frac{(r-x)}{-2x}q(-x).$$

• Proof: Clearly $q(x) = q_e(z) + xq_o(z)$.

• In other words, if r = x then $q_{fold}(z) = q(x)$.

• Similarly, if
$$r = -x$$
 then $q_{fold}(z) = q(-x)$.

- Recall: $q(X) = q_e(X^2) + X q_o(X^2)$
- Recall: The prescribed "folding" q is: $q_{fold}(Z) = q_e(Z) + rq_o(Z)$.
- Fact: Let x and -x be n'th roots of unity and $z = x^2$. Then:

$$q_{fold}(z) = \frac{(r+x)}{2x}q(x) + \frac{(r-x)}{-2x}q(-x).$$

- Proof: Clearly $q(x) = q_e(z) + xq_o(z)$.
- In other words, if r = x then $q_{fold}(z) = q(x)$.
- Similarly, if r = -x then $q_{fold}(z) = q(-x)$.
- The fact follows because it gives a degree-1 function of r with exactly this behavior at r = -x and r = x, and any two degree-1 functions of r that agree at two or more inputs must be the same function.

Folding phase (committed degree-3 polynomial in $\mathbb{F}_{41}[X]$ when $8 = 4\rho^{-1}$)

ZKP MOOC

- Recall: $q(X) = q_e(X^2) + X q_o(X^2)$
- Recall: The prescribed "folding" q is: $q_{fold}(Z) = q_e(Z) + rq_o(Z)$.
- The fact that the map $x \mapsto x^2$ is 2-to-1 on $\Omega = \{1, \omega, \omega^2, ..., \omega^{n-1}\}$ ensures that the relevant domain halves in size with each fold.
 - Other domains, like $\{0, 1, 2, \dots, n-1\}$, don't have this property.

Compare to Lecture 7

- Lecture 7 covered a variety of polynomial commitments (Ligero, Brakedown, Orion) that are similar to FRI.
 - All use error-correcting codes.
 - The only cryptography used is hashing (Merkle-hashing + Fiat-Shamir).

Compare to Lecture 7

- Lecture 7 covered a variety of polynomial commitments (Ligero, Brakedown, Orion) that are similar to FRI.
 - All use error-correcting codes.
 - The only cryptography used is hashing (Merkle-hashing + Fiat-Shamir).
- The Lecture 7 schemes viewed a degree-d polynomial as $d^{1/2}$ vectors each of length about $d^{1/2}$ and performed "a single random fold on all these vectors".
 - This resulted in larger proofs (size roughly $d^{1/2}$), but some advantages (e.g., linear-time prover, field-agnostic).
 - Proof size can be reduced via SNARK composition (will be discussed in Lecture 10).
- FRI views a degree-d polynomial as a single vector of length O(d) and "randomly folds it in half" logarithmically many times.

Sketch of the security analysis

- Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector w claimed to equal q's evaluations over Ω .
 - Here, Ω is the set of n'th roots of unity in \mathbb{F}_p , where $n = \rho^{-1} k$.
 - And q is claimed to have degree less than k.

- Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree k 1.
 - δ is the fraction of $x \in \Omega$ such that $h(x) \neq q(x)$.

- Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree k 1.
 - δ is the fraction of $x \in \Omega$ such that $h(x) \neq q(x)$.
- Claim: P "passes" all t "FRI verifier queries" with probability at most $\frac{k}{p} + (1 \delta)^t$.

- Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree k 1.
 - δ is the fraction of *x* ∈ Ω such that $h(x) \neq q(x)$.
- Claim: P "passes" all t "FRI verifier queries" with probability at most $\frac{k}{n} + (1 \delta)^t$.
 - Caveat: this is only known to hold for δ up to $1 \rho^{1/2}$, but is conjectured to hold for δ up to 1ρ .
 - Most FRI deployments' security are analyzed under this conjecture.
 - Informal interpretation: FRI V accepts with probability at most about $(1 (1 \rho))^t = \rho^t$.
 - In other words, each of the t queries contributes about $Log2(1/\rho)$ "bits of security".

- Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree k 1.
 - δ is the fraction of $x \in \Omega$ such that $h(x) \neq q(x)$.
- Claim: **P** "passes" all t "FRI verifier queries" with probability at most $\frac{k}{n} + (1 \delta)^t$.
 - Caveat: this is only known to hold for δ up to $1 \rho^{1/2}$, but is conjectured to hold for δ up to 1ρ .
 - Most FRI deployments' security are analyzed under this conjecture.
 - Informal interpretation: FRI V accepts with probability at most about $(1 (1 \rho))^t = \rho^t$.
 - In other words, each of the t queries contributes about $Log2(1/\rho)$ "bits of security".
 - E.g., if $\rho = \frac{1}{4}$, each FRI verifier queries contributes about 2 bits of security.
 - At the cost of roughly $log(n)^2$ hash values included in the proof.

- Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree k 1.
 - δ is the fraction of *x* ∈ Ω such that $h(x) \neq q(x)$.
- Claim: P "passes" all t "FRI verifier queries" with probability at most $\frac{k}{n} + (1 \delta)^t$.
 - Recall: $q_{fold}(Z) = q_e(Z) + rq_o(Z)$.
 - Can check: since q is δ -far from every degree-(k 1) polynomial h, at least one of q_e or q_o must be δ -far from every degree-(k/2 1) polynomial over the (n/2)-roots of unity.
 - Idea: A "random linear combination" of two functions, at least one of which is δ -far from degree-*d* polynomials, will also be is δ -far from degree-*d* with overwhelming probability.
 - The $\frac{k}{p}$ term bounds the probability that P "gets a lucky fold".
 - q_{fold} is close to degree-(k/2 1) even though q is not close to degree-(k-1).

- Let δ be the "relative Hamming distance" of q from the closest polynomial h of degree k 1.
 - δ is the fraction of *x* ∈ Ω such that $h(x) \neq q(x)$.
- Claim: **P** "passes" all t "FRI verifier queries" with probability at most $\frac{k}{n} + (1 \delta)^t$.
 - Idea 2: If P does "not get a lucky fold", then the "true" final folded function is δ-far from any degree-0 function.
 - But P is forced to send a degree-0 function as the final fold.
 - So at least one "fold" is done dishonestly by P.
 - In this case, each "FRI verifier query" detects a discrepancy in a fold with probability at least δ.
 - So all FRI verifier queries fail to detect the discrepancy with probability at most $(1 \delta)^t$.

The Known Attack on FRI

The known attack

- Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector w claimed to equal q's evaluations over Ω .
 - Here, Ω is the set of n'th roots of unity in \mathbb{F}_p , where $n = \rho^{-1} k$.
 - And q is claimed to have degree less than k.
 - The following P strategy works for any q (even ones maximally far from degree-k) and passes all FRI verifier checks with probability ρ^t.

The known attack

- Recall: at the start of the FRI polynomial commitment, P Merkle-commits to a vector w claimed to equal q's evaluations over Ω .
 - Here, Ω is the set of *n*'th roots of unity in \mathbb{F}_p , where $n = \rho^{-1} k$.
 - And q is claimed to have degree less than k.
 - The following P strategy works for any q (even ones maximally far from degree-k) and passes all FRI verifier checks with probability ρ^t.
 - P picks a set T of k = ρn elements of Ω and computes a polynomial s of degree k 1 that agrees with q at those points.
 - P folds s rather than q during the folding phase.
 - All *t* FRI verifier queries lie in *T* with probability ρ^t .

Polynomial Commitment from FRI

Recall: Initial Attempt from Lecture 4

- P Merkle-commits to all evaluations of the polynomial q.
- When V requests q(r), P reveals the associated leaf along with opening information.
- New Problems with FRI:
 - P has only Merkle-committed to evaluations of q over domain Ω, not the whole field.
 - V only knows that q is "not too far" from low-degree, not exactly low-degree.

- Recall the following FACT used in KZG commitments:
 - FACT: For any degree-*d* univariate polynomial *q*, the assertion "q(r) = v" is equivalent to the existence of a polynomial *w* of degree at most *d* such that

•
$$q(X) - v = w(X)(X - r).$$

 So to confirm that q(r) = v, ∨ applies FRI's fold+query procedure to the function (q(X) - v) (X - r)⁻¹ using degree bound d - 1.

- Recall the following FACT used in KZG commitments:
 - FACT: For any degree-*d* univariate polynomial *q*, the assertion "q(r) = v" is equivalent to the existence of a polynomial *w* of degree at most *d* such that

•
$$q(X) - v = w(X)(X - r).$$

- So to confirm that q(r) = v, V applies FRI's fold+query procedure to the function $(q(X) v) (X r)^{-1}$ using degree bound d 1.
 - Whenever the FRI verifier queries this function at a point in Ω, the evaluation can be obtained with one query to q at the same point.

- Recall the following FACT used in KZG commitments:
 - FACT: For any degree-*d* univariate polynomial *q*, the assertion "q(r) = v" is equivalent to the existence of a polynomial *w* of degree at most *d* such that

•
$$q(X) - v = w(X)(X - r).$$

- So to confirm that q(r) = v, V applies FRI's fold+query procedure to the function $(q(X) v) (X r)^{-1}$ using degree bound d 1.
 - Whenever the FRI verifier queries this function at a point in Ω, the evaluation can be obtained with one query to q at the same point.
- Can show: To pass V's checks in this polynomial commitment with noticeable probability, v has to equal h(r), where h is the degree-d polynomial that is closest to q.

- Recall the following FACT used in KZG commitments:
 - FACT: For any degree-*d* univariate polynomial *q*, the assertion "q(r) = v" is equivalent to the existence of a polynomial *w* of degree at most *d* such that

•
$$q(X) - v = w(X)(X - r).$$

- So to confirm that q(r) = v, V applies FRI's fold+query procedure to the function $(q(X) v) (X r)^{-1}$ using degree bound d 1.
 - Whenever the FRI verifier queries this function at a point in Ω, the evaluation can be obtained with one query to q at the same point.
- Caveat: The security analysis requires δ to be (at most) $(1 \rho)/2$. Each FRI verifier queries brings (less than) 1 bit of security, not $\log 2(1/\rho)$ bits.

- Recall the following FACT used in KZG commitments:
 - FACT: For any degree-*d* univariate polynomial *q*, the assertion "q(r) = v" is equivalent to the existence of a polynomial *w* of degree at most *d* such that

•
$$q(X) - v = w(X)(X - r).$$

- So to confirm that q(r) = v, ∨ applies FRI's fold+query procedure to the function (q(X) - v) (X - r)⁻¹ using degree bound d - 1.
 - Whenever the FRI verifier queries this function at a point in Ω, the evaluation can be obtained with one query to q at the same point.
- People are using FRI today as a weaker primitive than a polynomial commitment, which still suffices for SNARK security.
 - P is bound to a "small set" of low-degree polynomials rather than to a single one.

The Fiat-Shamir Transformation and Concrete Security

Recall: Fiat-Shamir transformation

Recall: Fiat-Shamir transformation

Grinding attack on Fiat-Shamir:

• P_{FS} iterates over first-messages α until it finds one such that $R(x, \alpha)$ is "lucky"

• P_{FS} iterates over first-messages α until it finds one such that $R(x, \alpha)$ is "lucky"

- P_{FS} iterates over first-messages α until it finds one such that $R(x, \alpha)$ is "lucky"
- Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of statistical security (soundness error 2^{-80}).
 - With 2^b hash evaluations, grinding attack will succeed with probability 2^{-80+b} .
 - E.g., with 2^{70} hashes, successfully attack with probability about 2^{-10} .

- P_{FS} iterates over first-messages α until it finds one such that $R(x, \alpha)$ is "lucky"
- Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of statistical security (soundness error 2^{-80}).
 - With 2^b hash evaluations, grinding attack will succeed with probability 2^{-80+b} .
- E.g., with 2^{70} hashes, successfully attack with probability about 2^{-10} . Comparison:

For a collision-resistant hash function (CRHF) configured to 80 bits of security, the fastest collision-finding procedure should be a **birthday attack**.

- P_{FS} iterates over first-messages α until it finds one such that $R(x, \alpha)$ is "lucky"
- Example: Suppose you apply Fiat-Shamir to an interactive protocol with 80 bits of statistical security (soundness error 2^{-80}).
 - With 2^b hash evaluations, grinding attack will succeed with probability 2^{-80+b} .
- E.g., with 2^{70} hashes, successfully attack with probability about 2^{-10} . Comparison:

With 2^k hash evaluations, finds a collision with a probability of only 2^{2k-160} . For example, 2^{70} hash evaluations will yield a collision with a probability of 2^{-20} .

How many hashes are feasible today?

- Today, the bitcoin network performs 2⁸⁰ SHA-256 hashes roughly every hour.
 - At current prices, those hashes typically earn less than \$1 million worth of block rewards.

How many hashes are feasible today?

- Today, the bitcoin network performs 2⁸⁰ SHA-256 hashes roughly every hour.
 - At current prices, those hashes typically earn less than \$1 million worth of block rewards.
- In January 2020, the cost of computing just shy of 2⁶⁴ SHA-1 evaluations using GPUs was \$45,000.
 - This puts 2⁷⁰ hashes at about \$3,000,000.
 - Likely less today, post-Ethereum-merge.

Interactive vs. Non-Interactive Security

Interactive Security

- A polynomial commitment scheme such as FRI, when run interactively at "λ bits of security", has the following security guarantee
 - Assuming P cannot find a collision in the hash function used to build Merkle trees, a lying P cannot pass the verifier's checks with probability better than $2^{-\lambda}$.
 - A lying P must actually interact with V to learn V's challenges, in order to find out if it receives a "lucky" challenge!

Interactive Security

- For example, if $\lambda = 60$, then with probability at least 1- 2⁻³⁰, V will reject (at least) 2³⁰ times before a lying P succeeds in convincing V to accept.
 - It seems unlikely that V would continue interacting with a P that has been caught in a lie 2³⁰ times.
 - In many settings, interactive with V may take long enough that P wouldn't have time to make 1 billion attempts even if V were willing to consider each one.
 - E.g., One billion Ethereum blocks take 3 years to create (at one block per 12 seconds).

Non-interactive security

- Suppose Fiat-Shamir is applied to an interactive protocol such as FRI that was run at λ bits of interactive security.
 - The resulting **non-interactive** protocol has the following much weaker guarantee:
 - A lying P willing to perform 2^k hash evaluations can successfully attack the protocol with probability $2^{k-\lambda}$.
 - A lying P can attempt the attack "silently".
 - Unlike in the interactive case, P can perform a "grinding attack" without interacting with V until P receives a lucky challenge.

Non-interactive security

- Suppose Fiat-Shamir is applied to an interactive protocol such as FRI that was run at λ bits of interactive security.
 - The resulting non-interactive protocol has the following much weaker guarantee:
 - A lying P willing to perform 2^k hash evaluations can successfully attack the protocol with probability $2^{k-\lambda}$.
 - A lying P can attempt the attack "silently".
 - Unlike in the interactive case, P can perform a "grinding attack" without interacting with V until P receives a lucky challenge.
 - Higher security levels λ are necessary in this setting.
 - 60 bits of interactive security is fine in many contexts.
 - 60 bits of non-interactive security is not okay unless the payoff of a successful attack is minimal.

Fiat-Shamir security loss for many-round protocols can be huge

An interactive protocol

- Consider the following (silly) interactive protocol for the empty language (i.e., V should always reject).
- P sends a message (a nonce) which V ignores.
- V tosses a random coin, rejecting if it comes up heads and accepting if it comes up tails.
- The soundness error of this protocol is 1/2.
- If you sequentially repeat it λ times and accept only if every run accepts, the soundness error falls to $1/2^{\lambda}$.

Fiat-Shamir-ing this interactive protocol is insecure

- Recall: If you sequentially repeat it λ times and accept only if every run accepts, the soundness error falls to $1/2^{\lambda}$.
 - Consider Fiat-Shamir-ing this λ -round protocol to render it non-interactive.
 - A cheating prover P_{FS} can find a convincing "proof" for the non-interactive protocol with $O(\lambda)$ hash evaluations.

Fiat-Shamir-ing this interactive protocol is insecure

- Recall: If you sequentially repeat it λ times and accept only if every run accepts, the soundness error falls to $1/2^{\lambda}$.
 - Consider Fiat-Shamir-ing this λ -round protocol to render it non-interactive.
 - A cheating prover P_{FS} can find a convincing "proof" for the non-interactive protocol with $O(\lambda)$ hash evaluations.
 - Idea: P_{FS} grinds on the first repetition alone (i.e., iterate over nonces in the first repetition until one is found that hashes to tails. This requires 2 attempts in expectation until success.) Fix this first nonce m₁ for the remainder of the attack.

Fiat-Shamir-ing this interactive protocol is insecure

- Recall: If you sequentially repeat it λ times and accept only if every run accepts, the soundness error falls to $1/2^{\lambda}$.
 - Consider Fiat-Shamir-ing this λ -round protocol to render it non-interactive.
 - A cheating prover P_{FS} can find a convincing "proof" for the non-interactive protocol with $O(\lambda)$ hash evaluations.
 - Idea: P_{FS} grinds on the first repetition alone (i.e., iterate over nonces in the first repetition until one is found that hashes to tails. This requires 2 attempts in expectation until success.) Fix this first nonce m₁ for the remainder of the attack.
 - Then P_{FS} grinds on the second repetition alone until it finds an m_2 such that (m_1, m_2) hashes to tails. Fix m_2 for the remainder of the attack.
 - Then P_{FS} grinds on the third repetition, and so on.

 Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge loss in security, whereby the resulting non-interactive protocol is totally insecure.

- Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge loss in security, whereby the resulting non-interactive protocol is totally insecure.
- Fortunately, this security loss can be ruled out if the interactive protocol satisfies a stronger notion of soundness called *round-by-round* soundness.

- Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge loss in security, whereby the resulting non-interactive protocol is totally insecure.
- Fortunately, this security loss can be ruled out if the interactive protocol satisfies a stronger notion of soundness called *round-by-round* soundness.
 - This means an attacker in the interactive protocol has to "get very lucky all at once" (in a single round)... it can't succeed by getting "a little bit lucky many times".
 - The sequential repetition of soundness error 1/2 is **not** round-by-round sound.
 - The attacker can "get a little lucky" each round and succeed (i.e., in each round with probability 1/2 it gets the "lucky" challenge Tails each round).
 - The sum-check protocol (Lecture 4) is an example of a logarithmic-round protocol that is known to be round-by-round sound.
 - Something analogous is known for Bulletproofs [AFK22, Wik21].

- Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge loss in security, whereby the resulting non-interactive protocol is totally insecure.
- Fortunately, this security loss can be ruled out if the interactive protocol satisfies a stronger notion of soundness called *round-by-round* soundness.
- FRI is a logarithmic-round interactive protocol that is always deployed noninteractively today.
 - It has **not** been shown to be round-by-round sound.

- Applying Fiat-Shamir to a many-round interactive protocol can lead to a huge loss in security, whereby the resulting non-interactive protocol is totally insecure.
- Fortunately, this security loss can be ruled out if the interactive protocol satisfies a stronger notion of soundness called *round-by-round* soundness.
- FRI is a logarithmic-round interactive protocol that is always deployed noninteractively today.
 - It has **not** been shown to be round-by-round sound.
- SNARK designers applying Fiat-Shamir to interactive protocols with more than 3 messages should show that the protocol is round-by-round sound if they want to rule out a major security loss.

END OF LECTURE

Next lecture: SNARKs from Linear PCPs (e.g., Groth16)

Example: Reed-Solomon encoding of a vector over \mathbb{F}_{11} .

1. Recall from Lecture 5: n'th roots of unity

Let $\omega \in \mathbb{F}_p$ be a primitive k-th root of unity (so that $\omega^k = 1$). • if $\Omega = \{1, \omega, \omega^2, ..., \omega^{k-1}\} \subseteq \mathbb{F}_p$ then $Z_{\Omega}(X) = X^k - 1$