Zero Knowledge Proofs

Polynomial Commitments based on error-correcting codes

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

GEORGETOWN

Recall: common paradigm for efficient SNARK

ZKP MOOC

Last time: KZG polynomial commitment

Last time: other PC based on discrete-log

Scheme	Prover	Proof size	Verifier	Trusted Setup	Crypto primitive
Bullet -proofs	$O_{\lambda}(d)$	$O_{\lambda}(\log d)$	$O_{\lambda}(d)$	*	discrete-log
Hyrax	$O_{\lambda}(d)$	$O_{\lambda}(\sqrt{d})$	$O_\lambda(\sqrt{d})$	×	discrete-log
Dory	$O_{\lambda}(d)$	$O_{\lambda}(\log d)$	$O_{\lambda}(\log d)$	×	pairing
Dark	$O_{\lambda}(d)$	$O_{\lambda}(\log d)$	$O_{\lambda}(\log d)$	×	unknown order group

Poly-commit based on error-correcting codes

Motivations:

- ✓ Plausibly post-quantum secure
- No group exponentiations (prover only uses hashes, additions and multiplications)
- ✓ Small global parameters

Drawbacks:

- **×** Large proof size
- **×** Not homomorphic and hard to aggregate

Plan of this lecture

- Background on error-correcting codes
- Polynomial commitment based on error-correcting codes
- Linear-time encodable code based on expanders

Background

7

Error-correcting code

- $[n, k, \Delta]$ code:
- Enc(m): Encode a message of size k to a codeword of size n
- Minimum distance (Hamming) between any two codewords is Δ

Example: repetition code

Binary with k = 2 and n = 6

- Enc(00) = 000000, Enc(01) = 000111
- Enc(10) = 111000, Enc(11) = 111111
- Minimum distance $\Delta = 3$

Can correct 1 error during the transmission e.g. $010111 \rightarrow 01$ Dec(c): decode algorithm (not used in poly-commit)

Rate and relative distance

Rate:
$$\frac{k}{n}$$
 Relative distance: $\frac{\Delta}{n}$

E.g. repetition code with rate
$$\frac{1}{a}$$
, $\Delta = a$, relative distance: $\frac{1}{k}$

Trade-off between the rate and the distance of a code

Linear code

Any linear combination of codewords is also a codeword

 \Rightarrow Encoding can always be represented as vector-matrix multiplication between m and the generator matrix

⇒ minimum distance is the same as the codeword with the least number of non-zeros (weight).

Example: Reed-Solomon Code

Encode: $\mathbb{F}_p^k \to \mathbb{F}_p^n$

- View the message as a unique degree k-1 univariate polynomial
- The codeword is the evaluations at n points

E.g., $(\omega, \omega^2, ..., \omega^n)$ for n-th root-of-unity $\omega^n = 1 \mod p$

• Distance $\Delta = n - k + 1$

a degree k-1 polynomial has at most k-1 roots $\sum a m = 2k$ rate is 1/2 and relative distance is 1/2

E.g, n = 2k, rate is 1/2, and relative distance is 1/2

Encoding time: O(n log n) using the fast Fourier transform (FFT)

Polynomial commitment based on linear codes

Recall: polynomial commitment

Polynomial coefficients in a matrix

$$\sqrt{d} \left\{ \begin{pmatrix} f_{1,1} & f_{1,2} & \cdots & f_{1,\sqrt{d}} \\ f_{2,1} & f_{2,2} & \cdots & f_{2,\sqrt{d}} \\ \vdots & \ddots & \vdots \\ f_{\sqrt{d},1} & f_{\sqrt{d},2} & \cdots & f_{\sqrt{d},\sqrt{d}} \end{pmatrix} \right\}$$
$$f(u) = \sum_{i=1}^{\sqrt{d}} \sum_{j=1}^{\sqrt{d}} f_{i,j} u^{i-1+(j-1)\sqrt{d}} \sqrt{d}$$

Polynomial evaluation

$$\begin{aligned} \begin{bmatrix} 1, u, u^2, \dots, u^{\sqrt{d}-1} \end{bmatrix} \times \begin{pmatrix} f_{1,1} & f_{1,2} & \dots & f_{1,\sqrt{d}} \\ f_{2,1} & f_{2,2} & \dots & f_{2,\sqrt{d}} \\ \vdots & \ddots & \vdots \\ f_{\sqrt{d},1} & f_{\sqrt{d},2} & \dots & f_{\sqrt{d},\sqrt{d}} \end{pmatrix} \times \begin{bmatrix} 1 \\ u^{\sqrt{d}} \\ u^{2\sqrt{d}} \\ \dots \\ u^{d-\sqrt{d}} \end{bmatrix} \end{aligned}$$

$$f(u) = \sum_{i=1}^{\sqrt{d}} \sum_{j=1}^{\sqrt{d}} f_{i,j} u^{i-1+(j-1)\sqrt{d}}$$

Reducing to Vec-Mat product

$$\begin{bmatrix} 1, u, u^2, \dots, u^{\sqrt{d}-1} \end{bmatrix} \times \begin{pmatrix} f_{1,1} & f_{1,2} & \dots & f_{1,\sqrt{d}} \\ f_{2,1} & f_{2,2} & \dots & f_{2,\sqrt{d}} \\ \vdots & \ddots & \vdots \\ f_{\sqrt{d},1} & f_{\sqrt{d},2} & \dots & f_{\sqrt{d},\sqrt{d}} \end{pmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ &$$

Argument for Vec-Mat product \rightarrow Polynomial commitment with \sqrt{d} proof size

Encoding the polynomial

Encode each row with a linear code

Recall: Merkle tree commitment

ZKP MOOC

Recall: Merkle tree opening

ZKP MOOC

Committing the polynomial

Commit to each column of the encoded matrix using Merkle tree

Step 1: Proximity test

Soundness (Intuition)

Suppose the prover cheats

- If the vector is correctly computed → it is not a codeword → check 1
- If the vector is false → many different locations from the correct answer
 - By check 2, columns are as committed
 - Probability of passing check 3 is small

Ligero [AHIV'2017] and [BCGGHJ'2017]

- Ligero [AHIV'2017] : Interleaved test. Reed-Solomon code
- [BCGGHJ'2017] : Ideal linear commitment model. Linear-time encodable code → first SNARK with linear prover time

In the formal proof [AHIV'2017]

If the committed matrix C is e-far from any codeword for $e < \frac{\Delta}{\Lambda}$ $\rightarrow \Pr[w = r^T C \text{ is } e \text{-close to any codeword}] \leq \frac{e+1}{\pi}$ If $w = r^T C$ is *e*-far from any codeword → Pr[check 3 is true for t random columns] $\leq \left(1 - \frac{e}{r}\right)^{t}$

One optimization

Step 2: Consistency check

Soundness (intuition)

- By the proximity test, the committed matrix C is close to a codeword
- There exists an extractor that extracts F by Merkle tree commitment and decoding C, s.t. $\vec{u} \times F = m$ with probability $1 - \epsilon$

Poly-commit based on linear code

- Keygen: sample a hash function
- Commit: encode the coefficient matrix of *f* row-wise with a linear code, compute the Merkle tree commitment
- Eval and Verify:
 - Proximity test: random linear combination of all rows, check its consistency with t random columns
 - Consistency test: $\vec{u} \times F = m$, encode m and check its consistency with t random columns

•
$$f(u) = \langle m, \vec{u}' \rangle$$

Properties of the polynomial commitment

- Keygen: O(1), transparent setup!
- Commit:
 - Encoding: O(d logd) field multiplications using RS code, O(d) using linear-time encodable code
 - Merkle tree: O(d) hashes, O(1) commitment size
- Eval: O(d) field multiplications

(non-interactive via Fiat Shamir)

- Proof size: $O(\sqrt{d})$
- Verifier time: $O(\sqrt{d})$

Performance the poly-commit [GLSTW'21]

degree $d = 2^{25}$, linear-time encodable code

- Commit: 36s
- Eval: 3.2s
- Proof size: 49MB
- Verifier time: 0.7s

[Bootle-Chiesa-Groth'20] and Brakedown [GLSTW'21]

- [Bootle-Chiesa-Groth'20]: Tensor query IOP $\langle f, (\vec{u} \otimes \vec{u}') \rangle$
 - Generalizes to multiple dimensions with proof size $O(n^{\epsilon})$ for constant $\epsilon < 1$
- Brakedown [GLSTW'21]: polynomial commitment based on tensor query
 - Knowledge soundness without efficient decoding algorithm

[Bootle-Chiesa-Liu'21] and Orion [Xie-Zhang-Song'22]

Bootle-Chiesa-Liu'21]

- Proof size polylog(n) with a proof composition of tensor IOP and PCP of proximity [Mie'09]
- Orion [Xie-Zhang-Song'22]
 - Proof size O(log² n) with a proof composition of the codeswitching technique [Ron-Zewi-Rothblum'20]

(5.7MB for $d = 2^{25}$)

Linear-time encodable code

Credit: Faithie/Shutterstock

SNARKs with linear prover time

Linear-time encodable code [Spielman'96][Druk-Ishai'14]

Lossless Expander

left nodes = |L|, # right nodes = α|L| for a constant α
Degree of a left node = α

Degree of a left node = g

• For every subset *S* of nodes on the left, # of neighbors $|\Gamma(S)| = g|S|$, for $|S| \le \frac{\alpha |L|}{g}$

ZKP MOOC

Lossless Expander

left nodes = |L|, # right nodes =

- $\alpha |L|$ for a constant α
- Degree of a left node = g
- For every subset S of nodes on the left, # of neighbors

 $|\Gamma(S)| \ge (1 - \beta)g|S|, \text{ for } |S| \le \frac{\delta|L|}{g}$ (\beta \to 0, \delta \to \alpha)

Overview of the recursive encoding

Encoding algorithm

- Message m of size k, codeword size 4k, rate is 1/4
- Suppose there is an encoding algorithm from k/2 to 2k with good relative distance Δ
- Suppose there are lossless expander graphs of size k and 2k, and $\alpha = 1/2$
- 1. Pass *m* through lossless expander to get m_1 of size k/2
- **2.** Encode m_1 to get c_1 of size 2k
- 3. Pass c_1 through lossless expander to get c_2 of size k
- 4. Codeword $c = m ||c_1||c_2$

Recursive encoding

• Repeat for k/2, k/4 ... until a constant size

Use any code with good distance for a constant-size message. E.g., Reed-Solomon code

Distance of the code

constant relative distance
$$\Delta' = \min\{\Delta, \frac{\delta}{4g}\}$$

Lossless Expander

left nodes = k, # right nodes = αk
for a constant α

Degree of a left node = g

 For every subset S of nodes on the left, # of neighbors

 $|\Gamma(S)| \ge (1 - \beta)g|S|, \text{ for } |S| \le \frac{\delta|L|}{g}$ $(\beta \to 0, \delta \to \alpha)$

Proof of constant relative distance [Druk-Ishai'14]

constant relative distance $\Delta' = \min\{\Delta, \frac{\delta}{4a}\}$, codeword $c = m||c_1||c_2|$

- 1. If weight of *m* is larger than $4k\Delta' \rightarrow done$
- 2. If (weight of m) $\leq 4k\Delta'$, the condition of lossless expander holds
 - Let *S* be the set of nonzero nodes, $|\Gamma(S)| \ge (1 \beta)g|S|$
 - At least 1 node in $|\Gamma(S)|$ have a unique neighbor in S
 - m_1 is nonzero \rightarrow (weight of c_1) $\geq 2k\Delta$
- 3. If it is larger than $4k\Delta' \rightarrow done$
- 4. Else, weight of $c_2 \ge 2k\Delta'$ because of lossless expander

Sampling of the lossless expander

 [Capalbo-Reingold-Vadhan-Wigderson'2002]: Explicit construction of lossless expander (large hidden constant)

Random sampling: 1/poly(n) failure probability

Improvements of the code

 Brakedown [Golovnev-Lee-Setty-Thaler-Wahby'21]: random summations with better concrete distance analysis

 Orion [Xie-Zhang-Song'22]: expander testing with a negligible failure probability via maximum density of the graph

Putting everything together

Polynomial commitment (and SNARK) based on linear code \checkmark Transparent setup: O(1)

- ✓ Commit and Prover time: O(d) field additions and multiplications
- ✓ Plausibly post-quantum secure
- ✓ Field agnostic

× Proof size: $O(\sqrt{d})$, MBs

End of Lecture

Next: FRI and Stark

