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First, a review of polynomial commitments

Prover commits to a polynomial Ὢὢ in  ὢ

Áeval:  for public όȟὺɴ ,  prover can convince the verifier that 

committed poly satisfies

Ὢό ὺ and   degὪ Ὠ.

ÁEval proof size and verifier time should be  ὕ ÌÏÇ▀

verifier has  Ὠȟcomf , όȟὺ
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The KZG poly-commit scheme  (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ

Group   ḧ {πȟὋȟςẗὋȟσẗὋȟȣȟὴ ρẗὋ} of order ὴ.

setup(ρ) ʝ gp:
ÁSample random  †ɴ

Ágp =

Ádelete  †!!      (trusted setup)

commit(gp, Ὢ) ʝ comf where    comf ḧ Ὢ†ẗ' ᶰ

ÁὪὢ Ὢ Ὢὢ Ễ Ὢὢ ᵼ comf ὪẗὌ Ễ ὪẗὌ
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The KZG poly-commit scheme  (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ

Group   ḧ {πȟὋȟςẗὋȟσẗὋȟȣȟὴ ρẗὋ} of order ὴ.

setup(ρ) ʝ gp:
ÁSample random  †ɴ

Ágp =

Ádelete  †!!      (trusted setup)

commit(gp, Ὢ) ʝ comf where    comf ḧ Ὢ†ẗ' ᶰ

ÁὪὢ Ὢ Ὢὢ Ễ Ὢὢ ᵼ comf ὪẗὌ Ễ ὪẗὌ

a binding commitment, 
but not hiding
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commit(gp, Ὢ) ʝ comf where     comf Ὢ†ẗὋ ᶰ

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal:  prove   Ὢό ὺ

Ὢό ὺ ᵾ όis a root of  ὪḧŦҍὺ ᵾ (X-ό) divides Ὢ

ᵾ exists  qᶰ ὢ s.t.   q(X)ẗ(X-ό) = f(X)ҍὺ

compute  q(X)
and  comq= q(†ẗ'

“ḧ comqᶰ accept if
(†ҍό)ẗcomq =comfҍὺẗG(proof size indep. of deg. d)

The KZG poly-commit scheme  (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ
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commit(gp, Ὢ) ʝ comf where     comf Ὢ†ẗὋ ᶰ

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal:  prove   Ὢό ὺ

Ὢό ὺ ᵾ όis a root of  ὪḧŦҍὺ ᵾ (X-ό) divides Ὢ

ᵾ exists  qᶰ ὢ s.t.   q(X)ẗ(X-ό) = f(X)ҍὺ

compute  q(X)
and  comq= q(†ẗ'

“ḧ comqᶰ accept if
(†ҍό)ẗcomq =comfҍὺẗG(proof size indep. of deg. d)

The KZG poly-commit scheme  (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ

(† ό) q(†)ẗ'Ḳ( f (†) Ö )ẗ'
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commit(gp, Ὢ) ʝ comf where     comf Æ†ẗ' ᶰ

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal:  prove   Ὢό ὺ

Ὢό ὺ ᵾ όis a root of  ὪḧŦҍὺ ᵾ (X-ό) divides Ὢ

ᵾ exists  qᶰ ὢ s.t.   q(X)ẗ(X-ό) = f(X)ҍὺ

“ḧ comqᶰ accept if
(†ҍό)ẗcomq =comfҍὺẗG

The KZG poly-commit scheme  (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ

An expensive computation 
for large Ὠ Verifier does not know †ᵼ ǳǎŜǎ ŀ άǇŀƛǊƛƴƎέ

(and only needs ὌȟὌ from gp) 

Iƻǿ ǘƻ ǇǊƻǾŜ ǘƘŀǘ ǘƘƛǎ ƛǎ ŀ ǎŜŎǳǊŜ t/{Κ    bƻǘ ǘƻŘŀȅ Χ

(proof size indep. of deg. d)

compute  q(X)
and  comq= q(†ẗ'
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Generalizations:

ÁCan also use KZG to commit to k-variate polynomials   [PST’13]

ÁBatch proofs:
Ásuppose verifier has commitments      comf1Σ Χ comfn

Áprover wants to prove    Ὢόȟ ὺȟ for   Ὥɴ ὲȟὮɴ ά

ᵼ batch proof “is only one group element !

The KZG poly-commit scheme  (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ
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Properties of KZG:  linear time commitment

Two ways to represent a polynomial Ὢὢ in  ὢ :

ÁCoefficient representation:   Ὢὢ Ὢ Ὢὢ Ễ Ὢὢ

ᵼ computing comf ὪẗὌ Ễ ὪẗὌ takes linear time in Ὠ

ÁPoint-value representation:   ὥȟὪὥ ȟȣȟὥȟὪὥ

computing comf naively: construct coefficients  ὪȟὪȟȣȟὪ

ᵼ time  ὕὨÌÏÇὨ using Num. Th. Transform (NTT)
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Properties of KZG:  linear time commitment

Point-value representation:   a better way to compute comf

Lagrange interpolation:  Ὢ† В ‗†ɇὪὥ

ÁIdea: transform Ὣὴinto Lagrange form (a linear map)

Ὣὴ

ÁNow,   comf Ὢ†ẗ' Ὢὥ ẗὌ Ễ Ὢὥ ẗὌ

ᵼ linear time in Ὠ.      (better than /ὨÌÏÇὨ )

where
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KZG fast multi-point proof generation

Prover has some Ὢὢ in  ὢ .       Let  ɱṖ and  ȿɱȿ Ὠ

Suppose prover needs evaluation proofs  “ ᶰὋ for all ὥᶰɱ

ÁNaively,  takes time  ὕὨ :    Ὠproofs each takes time ὕὨ

ÁFeist-Khovratovich(FK) algorithm (2020):

Áif ɱis a multiplicative subgroup:   time ὕὨÌÏÇὨ

Áotherwise:  time ὕὨÌÏÇὨ

https://alinush.github.io/2021/06/17/Feist-Khovratovich-technique-for-computing-KZG-proofs-fast.html
https://alinush.github.io/2021/06/17/Feist-Khovratovich-technique-for-computing-KZG-proofs-fast.html
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The Dory polynomial commitment    (eprint/2020/1274)

Dory:

Átransparent setup:   no secret randomness in setup

Ácomf is a single group element   (independent of degree Ὠ)

Áeval proof size for Ὢᶰ ὢ is   O(log Ὠ)   group elements

Áeval verify time is  O(log Ὠ)          Prover time:   ὕὨ

Difficulties with KZG:   trusted setup for gp, and gp size is linear in d.
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PCS have many applications

Example: vector commitment(a drop-in replacement for Merkle trees)

Bob:  vector  όȟȣȟό ᶰ Alice

interpolate poly  █s.t.:
█Ὥ ό for  Ὥ ρȟȣȟὯ

com█ḧ commit(gp, █)

prove  ό ὥȟό ὦ“ḧeval proof that  █ς ὥ,  █τ ὦ

“ᶰ accept or
reject

(KZG:   “is a single group element)

shorter than a Merkle proof!



Credit: Faithie/Shutterstock
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Proving properties of 
committed polynomials 
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Proving properties of committed polynomials 

Prover P(ὪȟὫ) Verifier V(  ὪȟὫ )

Goal: convince verifier that ὪȟὫᶰ ὢ satisfy some properties

Proof systems presented as an IOP:
ὶ ὶᵻ

$

ή

query ὪὢȟὫὢȟήὢ at some points in 

[ V sends ὼto P who responds with Ὢὼ and eval proof “] accept or reject
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Recall:  polynomial equality testing

Suppose  ὴҒ н256 and   ὨҖ н40 so that    ὨȾὴ is negligible

Let    ὪȟὫᶰ ὢ.

For  ὶᵻ ,      if     Ὢὶ Ὣὶ then       Ὢ Ὣ w.h.p

ᵼ a simple equality test for two committed polynomials

Ὢὶ Ὣὶ π ᵼ Ὢ Ὣ π w.h.p

$
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Review: the proof system as an IOP

Prover Verifier

█ȟ▌

query Ὢ8 and Ὣὢ at ὶ

accept if:
Ὢὶ Çὶ

ὶᵻ
$

Ὢ Ὣ

learn ὪὶȟÇὶ
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Review: the compiled proof system

Prover Verifier

█ȟ▌

ὶ

accept if:
(i)  ώ ώȭ, ÁÎÄ
(ii) “Ὢ, “Ὣare    

valid

ὶᵻ
$

Ὢ Ὣ

ώ,   “Ὢ ώᴂ,   “Ὣ

ώᵻ Ὢὶ

ώᶧὫὶ

proof that 
ώ Ὢὶ

proof that 
ώᴂ Ὣὶ
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Review: the compiled proof system

Prover Verifier

█ȟ▌

ὶ

accept if:
(i)  ώ ώȭ, ÁÎÄ
(ii) “Ὢ, “Ὣare    

valid

ὶᵻ
$

Ὢ Ὣ

ώ,   “Ὢ ώᴂ,   “Ὣ

ώᵻ Ὢὶ

ώᶧὫὶ

A public coin 
protocol

Make 
non-interactive 

using Fiat-Shamir

proof that 
ώ Ὢὶ

proof that 
ώᴂ Ὣὶ
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Polynomial equality testing with KZG

For KZG: Ὢ Ὣ ÃÏÍὪ ÃÏÍὫ

ᵼ verifier can tell if Ὢ Ὣon its own

But prover is needed to test equality of computed polynomials

ÁExample:  verifier has   ὪȟὫȟὫȟὫ where all four are in ὢ

to test if  Ὢ ὫὫὫ:   V queries all four poly. at  ὶᵻ and tests equality

ÁComplete and sound assuming σὨȾὴis negligible      ( ÄÅÇὫὫὫ σὨ)

$
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Important proof gadgets for univariates

Let ɱbe some subset of of size Ὧ.

Let   Ὢɴ ὢ Ὠ Ὧ Verifier has   Ὢ

Let us construct efficient Poly-IOPs for the following tasks:

Task 1 (ZeroTest):   prove that  Ὢis identically zero on ɱ

Task 2 (SumCheck): prove that   Вᶰ Ὢὥ π

Task 3 (ProdCheck): prove that   Б ᶰ Ὢὥ ρ
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The vanishing polynomial

Let ɱbe some subset of of size Ὧ.

Def:  the vanishing polynomial of ɱis   ὤ ὢ ḧБ ᶰ ὢ ὥ

deg(ὤ Ὧ

Let ‫ᶰ be a primitive Ὧ-th root of unity (so that  ‫ = 1). 

Áif  ɱ { 1, ‫Ὧ-1 } Ṗ ‫2Σ ΧΣ ,‫ then   ὤ ὢ ὢ ρ

ᵼ for  ὶɴ ,  evaluating   ὤ ὶ ǘŀƪŜǎ  ҖςÌÏÇὯ field operations
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(1)  ZeroTeston ɱ (ɱ= { 1, ( { ‫Ὧ-1 ‫2Σ ΧΣ ,‫

Prover P(Ὢ) Verifier V(  Ὢ)

ήὢ ᶧὪὢȾὤ ὢ ήᶰ ὢ

query ήὢ and Ὢὢ at  ὶ
learn  ήὶȟὪὶ

accept if   ὪὶḲήὶẗὤ ὶ

Thm:   this protocol is complete and sound,  assuming  ὨȾὴis negligible.

Lemma:  Ὢis zero on ɱif and only if 
Ὢὢ is divisible by ὤ ὢ (implies that Ὢὢ ήὢ ɇὤ ὢ w.h.p)

verifier evaluates 
ὤ ὶby itself ὶᵻ

$
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(1)  ZeroTeston ɱ (ɱ= { 1, ( { ‫Ὧ-1 ‫2Σ ΧΣ ,‫

Prover P(Ὢ) Verifier V(  Ὢ)

ήὢ ᶧὪὢȾὤ ὢ ήᶰ ὢ
ὶᵻ

query ήὢ and Ὢὢ at  ὶ
learn  ήὶȟὪὶ

accept if   ὪὶḲήὶẗὤ ὶ

Verifier time:  O(log Ὧ)  and  two poly queries (but can be done in one)

Prover time:  dominated by the time to compute ήὢ and then commit to ήὢ

verifier evaluates 
ὤ ὶby itself $
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(3)  Product check on ɱ:     Б ᶰ Ὢὥ ρ

Set   ὸɴ ὢ to be the degree-Ὧpolynomial:

ὸρ Ὢρȟ ὸ‫Ó Б Ὢ‫É for ί ρȟȣȟὯ ρ

Then t(‫ Ὢ1 ɇὪ‫ ,              t(‫ Ὢ1 ɇὪ‫ ɇὪ‫ Σ    Χ

t(‫ ) Б ᶰ Ὢὥ ρ

and ὸ‫ẗØ ὸὼẗὪ‫ẗØ for all   ὼɴ ɱ (including at  ὼ ‫ )



ZKP MOOC

(3)  Product check on ɱ:     Б ᶰ Ὢὥ ρ

Set   ὸɴ ὢ to be the degree-Ὧpolynomial:

ὸρ Ὢρȟ ὸ‫Ó Б Ὢ‫É for ί ρȟȣȟὯ ρ

Lemma: if (i) ὸ(‫ ) ρ and

(ii) ὸ‫ẗØ ὸὼẗὪ‫ẗØ π for all   ὼɴ ɱ

then    Б ᶰ Ὢὥ ρ
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(3)  Product check on ɱ (unoptimized)

Prover P(Ὢ) Verifier V(  Ὢ)

construct  ὸὢᶰ and ὸρὢ ὸ‫ẗὢ ὸὢẗὪ‫ẗὢ

set   q ὢ ὸρὢȾὢ ρ ᶰ

query  ὸὢ at   ‫ ȟὶȟ‫ὶ
learn  ὸ‫ ),   t(r),   ὸ‫ὶ,   ήὶ,  Ὢ‫ὶ

queryήὢ at  ὶ, and  Ὢὢ at ‫ὶ
accept if    ὸ‫ ) Ḳ1    and

ὸ‫ὶ ὸὶὪ‫ὶ Ḳήὶẗὶ ρproves that ὸρɱ π:

ὸ ή
ὶᵻ $

ὸὢ should be zero on ɱ
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(3)  Product check on ɱ (unoptimized)

Prover P(Ὢ) Verifier V(  Ὢ)

construct  ὸὢᶰ and ὸρὢ ὸ‫ẗὢ ὸὢẗὪ‫ẗὢ

set   q ὢ ὸρὢȾὢ ρ ᶰ

query  ὸὢ at   ‫ ȟὶȟ‫ὶ
learn  ὸ‫ ),   t(r),   ὸ‫ὶ,   ήὶ,  Ὢ‫ὶ

queryήὢ at  ὶ, and  Ὢὢ at ‫ὶ

ὶᵻ

ὸ ή

A public coin 
protocol

Proof size: two commits, five evals.   Verifier time: ὕÌÏÇὯ.   Prover time: ὕὯÌÏÇὯ.

$
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Same works for rational functions:   Б ᶰ ὪȾὫ ὥ ρ

Prover P(ὪȟὫ) Verifier V(  ὪȟὫ)

Set   ὸɴ ὢ to be the degree-Ὧpolynomial:

ὸρ ὪρȾὫρȟ ὸ‫Ó Б Ὢ‫ÉȾὫ‫É)     for ί ρȟȣȟὯ ρ

Lemma: if (i) ὸ(‫ ) ρ and

(ii) ὸ‫ẗØẗὫ‫ẗØ ὸὼẗὪ‫ẗØ for all   ὼɴ ɱ

then    Б ᶰ ὪὥȾὫὥ ρ
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(4)  Another useful gadget:  permutation check

Let    ὪȟὫbe polynomials in ὢȢ Verifier has   Ὢ ,    Ὣ .

Goal:   prover wants to prove that(ὪρȟὪ‫ȟὪ‫ ȟȣȟὪ‫ ) )  ɴ

is a permutation of (ὫρȟὫ‫ȟὫ‫ ȟȣȟὫ‫ ) ) ᶰ

ᵼ Proves that  Ὣɱ is the same as Ὢɱ , just permuted
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Let     Ὢὢ Б ᶰ ὢ Ὢὥ and     Ὣὢ Б ᶰ ὢ Ὣὥ

A public coin 
protocol

Prover P(ὪȟὫ) Verifier V(  ὪȟὫ )

Then:   Ὢὢ Ὣὢ Ὣis a permutation of Ὢ

ὶ

prove that Ὢὶ Ὣὶ
prod-check:

accept or reject
ώ[ƛǇǘƻƴΩǎ ǘǊƛŎƪΣ мфуфϐ

implies Ὢὢ Ὣὢ w.h.p

(4)  Another useful gadget:  permutation check

ὶᵻ $

[two commits, six evals]
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(5)  final gadget: prescribed permutation check

ὡȡɱᶨɱis a permutation of ɱif      ᶅ Ὥɴ Ὧȡὡ ‫ ‫ is a bijection

example Ὧ σ:     ὡ ‫ ‫ ȟὡ ‫ ‫ ȟ ὡ ‫ ‫

Let    ὪȟὫbe polynomials in ὢ .     Verifier has   Ὢ ,    Ὣ ,  ὡ .

Goal:   prover wants to prove that    Ὢώ Ὣὡ ώ for all   ώᶰɱ

ᵼ Proves that  Ὣɱ is the same as Ὢɱ , permuted by the prescribed ὡ
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Prescribed permutation check

How?    Use a zero-test to prove   Ὢώ Ὣὡ ώ π on ɱ

The problem:    the polynomial   Ὢώ Ὣὡ ώ has degree  k2

ᵼ prover would need to manipulate polynomials of degree k2

ᵼ quadratic time prover !!     (goal:  linear time prover)

[ŜǘΩǎ ǊŜŘǳŎŜ ǘƘƛǎ ǘƻ ŀ ǇǊƻŘ-check on a polynomial of degree ςὯ (not Ὧ)
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Prescribed permutation check

Observation:   

if   ὡ ὥȟὪὥ
ᶰ

is a permutation of   ὥȟὫὥ
ᶰ

then  Ὢώ Ὣὡ ώ for all ώᶰɱ

Proof by example:    ὡ ‫ ‫ ȟὡ ‫ ‫ ȟ ὡ ‫ ‫

Right tuple: ( 0̟,g(̟ 0)),  ( 1̟,g(̟ 1)),  ( 2̟,g(̟ 2))

Left tuple: ( 2̟ ,f( 0̟)),  ( 0̟ ,f( 1̟)),  ( 1̟,f( 2̟))



ZKP MOOC

Prescribed permutation check

Prover P(ὪȟὫȟὡ) Verifier V(  ὪȟὫȟ7 )

Let Ὢὢȟὣ Б ᶰ ὢ ὣɇὡ ὥ Ὢὥ and    

Ὣὢȟὣ Б ᶰ ὢ ὣɇὥ Ὣὥ

Lemma:   Ὢὢȟὣ Ὣὢȟὣ ὡ ὥȟὪὥ
ᶰ

is a perm. of  ὥȟὫὥ
ᶰ

(bivariate polynomials of total degree Ὧ)

To prove, use the fact that ὢȟὣ is a unique factorization domain 



ZKP MOOC

The complete protocol

Prover P(ὪȟὫȟὡ) Verifier V(  ὪȟὫȟ7 )

ὶȟί

accept or reject

ProdCheck:

Complete and sound,  assuming  ςὨȾὴis negligible.

implies Ὢὢȟὣ Ὣὢȟὣ w.h.p

by Schwartz-
Zippel

prove that Ὢὶȟί Ὣὶȟί:

ὶȟίᵻ $
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Summary of proof gadgets

prescribed permutation check 

permutation check 

product check,    sum check 

zero test on ɱ

polynomial equality testing



Credit: Faithie/Shutterstock

ZKP MOOC

The PLONK IOP
for general circuits

eprint/2019/953
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PLONK:  widely used in practice

The Plonk
IOP

Y½DΩмл
(pairings)

Aztec,  JellyFish

Halo2
(slow verifier)
(no trusted setup)

Bulletproofs
(no pairings)

Plonky2
(no trusted setup)

FRI
(hashing)

polynomial commitment scheme SNARK system
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PLONK:  a poly-IOP for a general circuit  ὅὼȟύ

The computation trace (arithmetization):

ὼρ ὼς ύρ

Ҏ

ὼρ ὼς ὼς ύρ

77 inputs: 5,   6,   1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

5 6 1 example input

11

5 6

7

6
1

left
inputs

right
inputs

outputs

Step 1:   compile circuit to a computation trace   (gate fan-in = 2)

(Gate 0) (Gate 1)

(Gate 2)
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Encoding the trace as a polynomial

ȿὅȿḧ total # of gates in ὅ,      |Ὅ| ḧ |Ὅὼ| + |Ὅύ| # inputs to ὅ

let  Ὠḧσὅ ȿὍȿ(in example, Ὠ ρς) and   ɱḧ { 1, ‫2Σ ΧΣ ,‫ ‫ } 

The plan:

prover interpolates a polynomial   Ὕᶰ [X]

that encodes the entire trace.

inputs: 5,   6,   1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77
[ŜǘΩǎ ǎŜŜ Ƙƻǿ Χ



ZKP MOOC

Encoding the trace as a polynomial

The plan:   Prover interpolates  Ὕᶰ [X] such that 

(1)    ╣encodes all inputs:     T(‫ input #Ὦ for ὮҐ мΣ ΧΣ ȿὍȿ

(2)    ╣encodes all wires:       ᶅ ὰ πȟȣȟὅ ρ:   

ÁT(:(‫σὰ left input to gate #ὰ

ÁT(‫σὰ+1):  right input to gate #ὰ

ÁT(:(‫σὰ+2 output of gate #ὰ

inputs: 5,   6,   1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77
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Encoding the trace as a polynomial

In our example, Prover interpolates  Ὕὢ such that:

inputs: T(‫ υ,    T(‫ φ,    T(‫ ρ, 

gate 0: T(‫ υ,      T(‫ φ,       T(‫ ρρ, 

gate 1: T(‫ φ,      T(‫ ρ,       T(‫ χ, 

gate 2: T(‫ ρρ,    T(‫ χ,      T(‫ χχ

degree(Ὕ) = 11

Prover can use FFT to compute the coefficients of T
in time  /ὨÌÏÇὨ

inputs: 5,   6,   1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77
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Step 2:  proving validity of T

Prover P(Ὓὴȟ●ȟἿ) Verifier V(Ὓὺȟ●)

build    Tὢ ᶰ [X]
Ὕ

Prover needs to prove that T is a correct computation trace:

(1) T encodes the correct inputs,

(2) every gate is evaluated correctly,

(3) the wiring is implemented correctly, 

(4) the output of last gate is 0

Proving (4) is easy:   prove  Ὕ(‫ π

inputs: 5 , 6,     1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

(wiring constraints)
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Proving (1):  T encodes the correct inputs

Both proverand verifier interpolate a polynomial ὺὢ ᶰ
ȿȿ

[X]

that encodes the ὼ-inputs to the circuit:

for  Ὦ ρȟȢȢȢȟȿὍȿȡ ὺ‫ input #j

In our example:   ὺ‫ υȟὺ‫ φ.       (ὺis linear)

constructing  ὺὢ takes time proportional to the size of input  ὼ

ᵼ verifier has time do this
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Proving (1):  T encodes the correct inputs

Both proverand verifier interpolate a polynomial ὺὢ ᶰ
ȿȿ

[X]

that encodes the ὼ-inputs to the circuit:

for  Ὦ ρȟȢȢȢȟȿὍȿȡ ὺ‫ input #j

Let  ɱinpḧ {‫ ȟ‫ ȟȣȟ‫ Ṗɱ (points encoding the input)

Prover proves (1) by using a ZeroTeston ɱinp to prove that     

T(y) ὺ(y) π yᶅ ɴ ɱinp
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Proving (2):  every gate is evaluated correctly

Idea:   encode gate types using a selectorpolynomial  S(X)

define  S(X) ɴ [X]   such that   ᶅὰ πȟȣȟὅ ρ:   

S(‫σὰ) = 1   if   gate #ὰis an addition gate

S(‫σὰ) = 0   if   gate #ὰis a multiplication gate

ὼρ ὼς ύρ

Ҏ

(Gate 0) (Gate 1)

(Gate 2)

inputs: 5 , 6, 1 Ὓὢ

Gate 0 (:(‫π 5 , 6 , 11 1

Gate 1 (:(‫σ 6 , 1 , 7 1

Gate 2 (:(‫φ 11, 7, 77 0

(+)
(+)
(×)
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Proving (2):  every gate is evaluated correctly

T((‫2y

Then   ᶅ y ɴ ɱgatesḧ { 1, ‫ωΣ ΧΣ ,‫φ ,‫σ ‫ } :

S(y)ẗ[T(y) + T(ⱷὁ)]  +  (1 ςS(y))ẗT(y)ẗT(ⱷὁ)  

left input right input outputleft input right input

Idea:   encode gate types using a selectorpolynomial  S(X)

define  S(X) ɴ [X]   such that   ᶅὰ πȟȣȟὅ ρ:   

S(‫σὰ) = 1   if   gate #ὰis an addition gate

S(‫σὰ) = 0   if   gate #ὰis a multiplication gate
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Proving (2):  every gate is evaluated correctly

S(y)ẗ[T(y) + T(‫Ùύ  ҍ  ¢ό‫2y)  π)‫Ù)]  +  (1 ςS(y))ẗT(y)ẗT

Prover P(ὴὴȟ●ȟἿ) Verifier V(ὺὴȟ●)

build    Tὢ ᶰ [X]
Ὕ

Setup(ὅ)   ʝ ὴὴḧS and   ὺὴḧ (   S )

Prover uses ZeroTestto prove that for all ᶅ y ɴ ɱgates:
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Proving (3):   the wiring is correct

Step 4:   encode the wires of  ὅ:

T((‫3)T = (‫1)T = (2-‫

T((‫0)T = (1-‫

T(‫6)T = (‫2

T((‫4)T = (3-‫

example: x1=5,  x2=6 ,  ύρ=1

3-‫ ,2-‫  ,1-‫ :  5, 6, 1

‫2  ,‫1  ,‫0 :  5, 6, 11

‫5  ,‫4  ,‫σ :  6, 1, 7

‫8  ,‫7  ,‫φ : 11, 7, 77

0:

1:

2:

Lemma:   ᶅ ώɴɱ:   T(ώ) = T(W(ώ))   ᵼ wire constraints are satisfied

Define a polynomial   W: ɱᶨɱ that implements a rotation:
W(‫1 ,2-‫ , ‫ρȟ‫0) = (‫0 ,1-‫)W     ,  ( 2-‫ ,‫3) = (‫3 , 1ύ Σ  Χ-‫
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Proving (3):   the wiring is correct

Step 4:   encode the wires of  ὅ:

T((‫3)T = (‫1)T = (2-‫

T((‫0)T = (1-‫

T(‫6)T = (‫2

T((‫4)T = (3-‫

example: x1=5,  x2=6 ,  ύρ=1

3-‫ ,2-‫  ,1-‫ :  5, 6, 1

‫2  ,‫1  ,‫0 :  5, 6, 11

‫5  ,‫4  ,‫σ :  6, 1, 7

‫8  ,‫7  ,‫φ : 11, 7, 77

0:

1:

2:

Lemma:   ᶅ ώɴɱ:   T(ώ) = T(W(ώ))   ᵼ wire constraints are satisfied

Define a polynomial   W: ɱᶨɱ that implements a rotation:
W(‫1 ,2-‫ , ‫ρȟ‫0) = (‫0 ,1-‫)W     ,  ( 2-‫ ,‫3) = (‫3 , 1ύ Σ  Χ-‫

Proved using a prescribed permutation check



ZKP MOOC

The complete Plonk Poly-IOP   (and SNARK)

Setup(ὅ) ʝ ὴὴḧ (Ὓ,ὡ)   and   ὺὴḧ (   Ὓ and   ὡ ) (untrusted)

Prover proves:  

(1)   S(y)ẗ[T(y) + T(‫2y) π)‫Ù) T)‫Ù)]  + (1 ςS(y))ẗT(y)ẗT yᶅ ɴ ɱgates

(2)   T(y) ὺ(y) π yᶅ ɴ ɱinp

(3)   T(y) T(ὡ(y)) π (using prescribed perm. check) yᶅ ɴ ɱ

(4)   T(‫ π (output of last gate = 0)

gates:

inputs:

wires:

output:

Prover P(ὴὴȟ●ȟἿ) Verifier V(ὺὴȟ●)

build  ὺὢ ᶰ
ȿȿ
ώ·ϐbuild    Tὢ ᶰ [X]

Ὕ
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The complete Plonk Poly-IOP   (and SNARK)

Setup(ὅ) ʝ ὴὴḧ (S,W)   and    ὺὴḧ (   S   and   W   )

Prover P(ὴὴȟ●ȟἿ) Verifier V(ὺὴȟ●)

build  ὺὢ ᶰ
ȿȿ
ώ·ϐbuild    Tὢ ᶰ [X]

Ὕ

Thm: The Plonk Poly-IOP is complete and knowledge sound, 

assuming χȿὅȿȾὴis negligible
(eprint/2019/953)
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aŀƴȅ ŜȄǘŜƴǎƛƻƴǎ Χ

ÁPlonk proof:   a short proof  (O(1) commitments),    fast verifier

ÁThe SNARK can easily be made into a zk-SNARK

Main challenge:   reduce prover time

ÁHyperplonk:  replace ɱwith  πȟρ ( where  ὸ ÌÏÇȿɱȿ)

ÁThe polynomial T  is now a multilinear polynomial in ὸvariables

ÁZeroTestis replaced by a multilinear SumCheck(linear time)
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A generalization:  plonkisharithmetization

Plonk for circuits with gates other than  +  and  × on rows:

Plonkishcomputation trace: (also used in AIR)
u1 v1 w1 t1 r1 s1

u2 v2 w2 t2 r2 s2

u3 v3 w3 t3 r3 s3

u4 v4 w4 t4 r4 s4

u5 v5 w5 t5 r5 s5

u6 v6 w6 t6 r6 s6

u7 v7 w7 t7 r7 s7

u8 v8 w8 t8 r8 s8

output
Plookup:  ensure some values are in a pre-defined list

ᶪώᶰɱ :    ὺώ‫ ύώɇὸώ ὸώ‫ π

An example custom gate:

All such gate checks are included in the gate check 



Credit: Faithie/Shutterstock
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END OF LECTURE

Next lecture:
More polynomial commitments


