
Zero Knowledge Proofs

The Plonk SNARK
Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

ZKP MOOC

Let’s build an efficient SNARK

A polynomial
interactive

oracle proof (IOP)

A polynomial
commitment

scheme

SNARK for
general circuits

ZKP MOOC

First, a review of polynomial commitments

Prover commits to a polynomial 𝑓(𝑋) in 𝔽𝑝
(≤𝑑)

𝑋

 eval: for public 𝑢, 𝑣 ∈ 𝔽𝑝, prover can convince the verifier that

committed poly satisfies

𝑓(𝑢) = 𝑣 and deg 𝑓 ≤ 𝑑.

 Eval proof size and verifier time should be 𝑂𝜆(log 𝒅)

verifier has (𝑑, comf , 𝑢, 𝑣)

ZKP MOOC

The KZG poly-commit scheme (Kate-Zaverucha-Goldberg’2010)

Group 𝔾 ≔ { 0, 𝐺, 2 ⋅ 𝐺, 3 ⋅ 𝐺 , … , 𝑝 − 1 ⋅ 𝐺 } of order 𝑝.

setup(1𝜆) ⇾ gp:
 Sample random 𝜏 ∈ 𝔽𝑝

 gp =

 delete 𝜏 !! (trusted setup)

commit(gp, 𝑓) ⇾ comf where comf ≔ 𝑓 𝜏 ⋅ G ∈ 𝔾

 𝑓 𝑋 = 𝑓0 + 𝑓1𝑋 + ⋯ + 𝑓𝑑𝑋𝑑 ⇒ comf = 𝑓0 ⋅ 𝐻0 + ⋯ + 𝑓𝑑 ⋅ 𝐻𝑑

ZKP MOOC

The KZG poly-commit scheme (Kate-Zaverucha-Goldberg’2010)

Group 𝔾 ≔ { 0, 𝐺, 2 ⋅ 𝐺, 3 ⋅ 𝐺 , … , 𝑝 − 1 ⋅ 𝐺 } of order 𝑝.

setup(1𝜆) ⇾ gp:
 Sample random 𝜏 ∈ 𝔽𝑝

 gp =

 delete 𝜏 !! (trusted setup)

commit(gp, 𝑓) ⇾ comf where comf ≔ 𝑓 𝜏 ⋅ G ∈ 𝔾

 𝑓 𝑋 = 𝑓0 + 𝑓1𝑋 + ⋯ + 𝑓𝑑𝑋𝑑 ⇒ comf = 𝑓0 ⋅ 𝐻0 + ⋯ + 𝑓𝑑 ⋅ 𝐻𝑑

a binding commitment,
but not hiding

ZKP MOOC

commit(gp, 𝑓) ⇾ comf where comf = 𝑓 𝜏 ⋅ 𝐺 ∈ 𝔾

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal: prove 𝑓(𝑢) = 𝑣

𝑓(𝑢) = 𝑣 ⇔ 𝑢 is a root of 𝑓 ≔ f−𝑣 ⇔ (X-𝑢) divides 𝑓

⇔ exists q ∈ 𝔽𝑝 [𝑋] s.t. q(X)⋅(X-𝑢) = f(X)−𝑣

compute q(X)
and comq=q(𝜏)⋅G

𝜋 ≔ comq ∈ 𝔾 accept if
(𝜏 −𝑢)⋅comq = comf − 𝑣⋅G(proof size indep. of deg. d)

The KZG poly-commit scheme (Kate-Zaverucha-Goldberg’2010)

ZKP MOOC

commit(gp, 𝑓) ⇾ comf where comf = 𝑓 𝜏 ⋅ 𝐺 ∈ 𝔾

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal: prove 𝑓(𝑢) = 𝑣

𝑓(𝑢) = 𝑣 ⇔ 𝑢 is a root of 𝑓 ≔ f−𝑣 ⇔ (X-𝑢) divides 𝑓

⇔ exists q ∈ 𝔽𝑝 [𝑋] s.t. q(X)⋅(X-𝑢) = f(X)−𝑣

compute q(X)
and comq=q(𝜏)⋅G

𝜋 ≔ comq ∈ 𝔾 accept if
(𝜏 −𝑢)⋅comq = comf − 𝑣⋅G(proof size indep. of deg. d)

The KZG poly-commit scheme (Kate-Zaverucha-Goldberg’2010)

(𝜏 −𝑢) q(𝜏) ⋅G ≟ (f (𝜏)−v) ⋅G

ZKP MOOC

commit(gp, 𝑓) ⇾ comf where comf = f 𝜏 ⋅ G ∈ 𝔾

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal: prove 𝑓(𝑢) = 𝑣

𝑓(𝑢) = 𝑣 ⇔ 𝑢 is a root of 𝑓 ≔ f−𝑣 ⇔ (X-𝑢) divides 𝑓

⇔ exists q ∈ 𝔽𝑝 [𝑋] s.t. q(X)⋅(X-𝑢) = f(X)−𝑣

𝜋 ≔ comq ∈ 𝔾 accept if
(𝜏 −𝑢)⋅comq = comf − 𝑣⋅G

The KZG poly-commit scheme (Kate-Zaverucha-Goldberg’2010)

An expensive computation
for large 𝑑 Verifier does not know 𝜏 ⇒ uses a “pairing”

(and only needs 𝐻0, 𝐻1 from gp)

How to prove that this is a secure PCS? Not today …

(proof size indep. of deg. d)

compute q(X)
and comq=q(𝜏)⋅G

ZKP MOOC

Generalizations:

 Can also use KZG to commit to k-variate polynomials [PST’13]

 Batch proofs:
 suppose verifier has commitments comf1 , … comfn

 prover wants to prove 𝑓𝑖 𝑢𝑖,𝑗 = 𝑣𝑖,𝑗 for 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]

⇒ batch proof 𝜋 is only one group element !

The KZG poly-commit scheme (Kate-Zaverucha-Goldberg’2010)

ZKP MOOC

Properties of KZG: linear time commitment

Two ways to represent a polynomial 𝑓(𝑋) in 𝔽𝑝
(≤𝑑)

𝑋 :

 Coefficient representation: 𝑓(𝑋) = 𝑓0 + 𝑓1𝑋 + ⋯ + 𝑓𝑑𝑋𝑑

⇒ computing comf = 𝑓0 ⋅ 𝐻0 + ⋯ + 𝑓𝑑 ⋅ 𝐻𝑑 takes linear time in 𝑑

 Point-value representation: 𝑎0, 𝑓 𝑎0 , … , 𝑎𝑑 , 𝑓 𝑎𝑑

computing comf naively: construct coefficients 𝑓0, 𝑓1, … , 𝑓𝑑

⇒ time 𝑂(𝑑 log 𝑑) using Num. Th. Transform (NTT)

ZKP MOOC

Properties of KZG: linear time commitment

Point-value representation: a better way to compute comf

Lagrange interpolation: 𝑓(𝜏) = 𝑖=0
𝑑 𝜆𝑖 𝜏 ∙ 𝑓(𝑎𝑖)

 Idea: transform 𝑔𝑝 into Lagrange form (a linear map)

 𝑔𝑝 =

 Now, comf = 𝑓 𝜏 ⋅ G = 𝑓(𝑎0) ⋅ 𝐻0 + ⋯ + 𝑓(𝑎𝑑) ⋅ 𝐻𝑑

⇒ linear time in 𝑑. (better than O(𝑑 log 𝑑))

where

ZKP MOOC

KZG fast multi-point proof generation

Prover has some 𝑓(𝑋) in 𝔽𝑝
(≤𝑑)

𝑋 . Let Ω ⊆ 𝔽𝑝 and |Ω| = 𝑑

Suppose prover needs evaluation proofs 𝜋𝑎 ∈ 𝐺 for all 𝑎 ∈ Ω

 Naively, takes time 𝑂(𝑑2): 𝑑 proofs each takes time 𝑂 𝑑

 Feist-Khovratovich (FK) algorithm (2020):

 if Ω is a multiplicative subgroup: time 𝑂(𝑑 log 𝑑)

 otherwise: time 𝑂(𝑑 log2𝑑)

https://alinush.github.io/2021/06/17/Feist-Khovratovich-technique-for-computing-KZG-proofs-fast.html
https://alinush.github.io/2021/06/17/Feist-Khovratovich-technique-for-computing-KZG-proofs-fast.html

ZKP MOOC

The Dory polynomial commitment (eprint/2020/1274)

Dory:

 transparent setup: no secret randomness in setup

 comf is a single group element (independent of degree 𝑑)

 eval proof size for 𝑓 ∈ 𝔽𝑝
(≤𝑑)

𝑋 is O(log 𝑑) group elements

 eval verify time is O(log 𝑑) Prover time: 𝑂(𝑑)

Difficulties with KZG: trusted setup for gp, and gp size is linear in d.

ZKP MOOC

PCS have many applications

Example: vector commitment (a drop-in replacement for Merkle trees)

Bob: vector 𝑢1, … , 𝑢𝑘 ∈ 𝔽𝑝
(≤𝑑)

Alice

interpolate poly 𝒇 s.t.:
𝒇 𝑖 = 𝑢𝑖 for 𝑖 = 1, … , 𝑘

com𝒇 ≔ commit(gp, 𝒇)

prove 𝑢2 = 𝑎, 𝑢4 = 𝑏𝜋 ≔ eval proof that 𝒇(2) = 𝑎, 𝒇(4) = 𝑏

𝜋 ∈ 𝔾 accept or
reject

(KZG: 𝜋 is a single group element)

shorter than a Merkle proof!

Credit: Faithie/Shutterstock

ZKP MOOC

Proving properties of
committed polynomials

ZKP MOOC

Proving properties of committed polynomials

Prover P(𝑓, 𝑔) Verifier V(𝑓 , 𝑔)

Goal: convince verifier that 𝑓, 𝑔 ∈ 𝔽𝑝
(≤𝑑)

[𝑋] satisfy some properties

Proof systems presented as an IOP:
𝑟 𝑟 ⇽ 𝔽𝑝

$

𝑞

query 𝑓 𝑋 , 𝑔(𝑋), 𝑞(𝑋) at some points in 𝔽𝑝

[V sends 𝑥 to P who responds with 𝑓(𝑥) and eval proof 𝜋] accept or reject

ZKP MOOC

Recall: polynomial equality testing

Suppose 𝑝 ≈ 2256 and 𝑑 ≤ 240 so that 𝑑/𝑝 is negligible

Let 𝑓, 𝑔 ∈ 𝔽𝑝
(≤𝑑)

[𝑋].

For 𝑟⇽ 𝔽𝑝 , if 𝑓(𝑟) = 𝑔(𝑟) then 𝑓 = 𝑔 w.h.p

⇒ a simple equality test for two committed polynomials

𝑓(𝑟) − 𝑔(𝑟) = 0 ⇒ 𝑓 − 𝑔 = 0 w.h.p

$

ZKP MOOC

Review: the proof system as an IOP

Prover Verifier

𝒇, 𝒈

query 𝑓(X) and 𝑔 𝑋 at 𝑟

accept if:
𝑓 𝑟 = g(𝑟)

𝑟 ⇽ 𝔽𝑝
$

𝑓 𝑔

learn 𝑓 𝑟 , g(𝑟)

ZKP MOOC

Review: the compiled proof system

Prover Verifier

𝒇, 𝒈

𝑟

accept if:
(i) 𝑦 = 𝑦’, and
(ii) 𝜋𝑓, 𝜋𝑔 are

valid

𝑟 ⇽ 𝔽𝑝
$

𝑓 𝑔

𝑦, 𝜋𝑓 𝑦′, 𝜋𝑔

𝑦 ⇽ 𝑓(𝑟)

𝑦′⇽ 𝑔(𝑟)

proof that
𝑦 = 𝑓(𝑟)

proof that
𝑦′ = 𝑔(𝑟)

ZKP MOOC

Review: the compiled proof system

Prover Verifier

𝒇, 𝒈

𝑟

accept if:
(i) 𝑦 = 𝑦’, and
(ii) 𝜋𝑓, 𝜋𝑔 are

valid

𝑟 ⇽ 𝔽𝑝
$

𝑓 𝑔

𝑦, 𝜋𝑓 𝑦′, 𝜋𝑔

𝑦 ⇽ 𝑓(𝑟)

𝑦′⇽ 𝑔(𝑟)

A public coin
protocol

Make
non-interactive

using Fiat-Shamir

proof that
𝑦 = 𝑓(𝑟)

proof that
𝑦′ = 𝑔(𝑟)

ZKP MOOC

Polynomial equality testing with KZG

For KZG: 𝑓 = 𝑔 ⟺ com𝑓 = com𝑔

⇒ verifier can tell if 𝑓 = 𝑔 on its own

But prover is needed to test equality of computed polynomials

 Example: verifier has 𝑓 , 𝑔1 , 𝑔2 , 𝑔3 where all four are in 𝔽𝑝
(≤𝑑)

𝑋

to test if 𝑓 = 𝑔1𝑔2𝑔3: V queries all four poly. at 𝑟 ⇽ 𝔽𝑝 and tests equality

 Complete and sound assuming 3𝑑/𝑝 is negligible (deg(𝑔1𝑔2𝑔3) ≤ 3𝑑)

$

ZKP MOOC

Important proof gadgets for univariates

Let Ω be some subset of 𝔽𝑝 of size 𝑘.

Let 𝑓 ∈ 𝔽𝑝
(≤𝑑)

[𝑋] (𝑑 ≥ 𝑘) Verifier has 𝑓

Let us construct efficient Poly-IOPs for the following tasks:

Task 1 (ZeroTest): prove that 𝑓 is identically zero on Ω

Task 2 (SumCheck): prove that 𝑎∈Ω 𝑓 𝑎 = 0

Task 3 (ProdCheck): prove that 𝑎∈Ω 𝑓(𝑎) = 1

ZKP MOOC

The vanishing polynomial

Let Ω be some subset of 𝔽𝑝 of size 𝑘.

Def: the vanishing polynomial of Ω is 𝑍Ω(𝑋) ≔ 𝑎∈Ω(𝑋 − 𝑎)

deg(𝑍Ω) = 𝑘

Let 𝜔 ∈ 𝔽𝑝 be a primitive 𝑘-th root of unity (so that 𝜔𝑘 = 1).

 if Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 } ⊆ 𝔽𝑝 then 𝑍Ω 𝑋 = 𝑋𝑘 − 1

⇒ for 𝑟 ∈ 𝔽𝑝, evaluating 𝑍Ω 𝑟 takes ≤2 log2 𝑘 field operations

ZKP MOOC

(1) ZeroTest on Ω (Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 })

Prover P(𝑓) Verifier V(𝑓)

𝑞(𝑋) ⇽ 𝑓(𝑋)/𝑍Ω(𝑋) 𝑞 ∈ 𝔽𝑝
(≤𝑑)

𝑋

query 𝑞(𝑋) and 𝑓(𝑋) at 𝑟
learn 𝑞 𝑟 , 𝑓(𝑟)

accept if 𝑓 𝑟 ≟ 𝑞(𝑟) ⋅ 𝑍Ω(𝑟)

Thm: this protocol is complete and sound, assuming 𝑑/𝑝 is negligible.

Lemma: 𝑓 is zero on Ω if and only if
𝑓 𝑋 is divisible by 𝑍Ω(𝑋) (implies that 𝑓(𝑋) = 𝑞 𝑋 ∙ 𝑍Ω 𝑋 w.h.p)

verifier evaluates
𝑍Ω(𝑟) by itself 𝑟 ⇽ 𝔽𝑝

$

ZKP MOOC

(1) ZeroTest on Ω (Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 })

Prover P(𝑓) Verifier V(𝑓)

𝑞(𝑋) ⇽ 𝑓(𝑋)/𝑍Ω(𝑋) 𝑞 ∈ 𝔽𝑝
(≤𝑑)

𝑋
𝑟 ⇽ 𝔽𝑝

query 𝑞(𝑋) and 𝑓(𝑋) at 𝑟
learn 𝑞 𝑟 , 𝑓(𝑟)

accept if 𝑓 𝑟 ≟ 𝑞(𝑟) ⋅ 𝑍Ω(𝑟)

Verifier time: O(log 𝑘) and two poly queries (but can be done in one)

Prover time: dominated by the time to compute 𝑞(𝑋) and then commit to 𝑞(𝑋)

verifier evaluates
𝑍Ω(𝑟) by itself $

ZKP MOOC

(3) Product check on Ω : 𝑎∈Ω 𝑓(𝑎) = 1

Set 𝑡 ∈ 𝔽𝑝
(≤𝑘)

[𝑋] to be the degree-𝑘 polynomial:

𝑡(1) = 𝑓(1), 𝑡(𝜔s) = 𝑖=0
𝑠 𝑓(𝜔i) for 𝑠 = 1, … , 𝑘 − 1

Then t(𝜔) = 𝑓(1) ∙ 𝑓(𝜔), t(𝜔2) = 𝑓(1) ∙ 𝑓(𝜔) ∙ 𝑓(𝜔2) , …

t(𝜔𝑘−1) = 𝑎∈Ω 𝑓(𝑎) = 1

and 𝑡(𝜔 ⋅ x) = 𝑡(𝑥) ⋅ 𝑓(𝜔 ⋅ x) for all 𝑥 ∈ Ω (including at 𝑥 = 𝜔𝑘−1)

ZKP MOOC

(3) Product check on Ω : 𝑎∈Ω 𝑓(𝑎) = 1

Set 𝑡 ∈ 𝔽𝑝
(≤𝑘)

[𝑋] to be the degree-𝑘 polynomial:

𝑡(1) = 𝑓(1), 𝑡(𝜔s) = 𝑖=0
𝑠 𝑓(𝜔i) for 𝑠 = 1, … , 𝑘 − 1

Lemma: if (i) 𝑡(𝜔𝑘−1) = 1 and

(ii) 𝑡 𝜔 ⋅ x − 𝑡 𝑥 ⋅ 𝑓 𝜔 ⋅ x = 0 for all 𝑥 ∈ Ω

then 𝑎∈Ω 𝑓(𝑎) = 1

ZKP MOOC

(3) Product check on Ω (unoptimized)

Prover P(𝑓) Verifier V(𝑓)

construct 𝑡 𝑋 ∈ 𝔽𝑝
(≤𝑘)

and 𝑡1(𝑋) = 𝑡(𝜔 ⋅ 𝑋) − 𝑡(𝑋) ⋅ 𝑓(𝜔 ⋅ 𝑋)

set q(𝑋) = 𝑡1(𝑋)/(𝑋𝑘 − 1) ∈ 𝔽𝑝
(≤𝑑)

query 𝑡(𝑋) at 𝜔𝑘−1 , 𝑟, 𝜔𝑟
learn 𝑡(𝜔𝑘−1), t(r), 𝑡(𝜔𝑟), 𝑞(𝑟), 𝑓(𝜔𝑟)

query 𝑞 𝑋 at 𝑟 , and 𝑓(𝑋) at 𝜔𝑟
accept if 𝑡(𝜔𝑘−1) ≟ 1 and

𝑡 𝜔𝑟 − 𝑡(𝑟)𝑓(𝜔𝑟) ≟ 𝑞(𝑟) ⋅ (𝑟𝑘 − 1)proves that 𝑡1(Ω) = 0:

𝑡 𝑞
𝑟 ⇽ 𝔽𝑝

$

𝑡1(𝑋) should be zero on Ω

ZKP MOOC

(3) Product check on Ω (unoptimized)

Prover P(𝑓) Verifier V(𝑓)

construct 𝑡 𝑋 ∈ 𝔽𝑝
(≤𝑘)

and 𝑡1(𝑋) = 𝑡(𝜔 ⋅ 𝑋) − 𝑡(𝑋) ⋅ 𝑓(𝜔 ⋅ 𝑋)

set q(𝑋) = 𝑡1(𝑋)/(𝑋𝑘 − 1) ∈ 𝔽𝑝
(≤𝑑)

query 𝑡(𝑋) at 𝜔𝑘−1 , 𝑟, 𝜔𝑟
learn 𝑡(𝜔𝑘−1), t(r), 𝑡(𝜔𝑟), 𝑞(𝑟), 𝑓(𝜔𝑟)

query 𝑞 𝑋 at 𝑟 , and 𝑓(𝑋) at 𝜔𝑟

𝑟 ⇽ 𝔽𝑝

𝑡 𝑞

A public coin
protocol

Proof size: two commits, five evals. Verifier time: 𝑂 log 𝑘 . Prover time: 𝑂(𝑘 log 𝑘).

$

ZKP MOOC

Same works for rational functions: 𝑎∈Ω(𝑓/𝑔)(𝑎) = 1

Prover P(𝑓, 𝑔) Verifier V(𝑓 , 𝑔)

Set 𝑡 ∈ 𝔽𝑝
(≤𝑘)

[𝑋] to be the degree-𝑘 polynomial:

𝑡(1) = 𝑓(1)/𝑔(1), 𝑡(𝜔s) = 𝑖=0
𝑠 𝑓(𝜔i)/𝑔(𝜔i) for 𝑠 = 1, … , 𝑘 − 1

Lemma: if (i) 𝑡(𝜔𝑘−1) = 1 and

(ii) 𝑡 𝜔 ⋅ x ⋅ 𝑔 𝜔 ⋅ x = 𝑡 𝑥 ⋅ 𝑓 𝜔 ⋅ x for all 𝑥 ∈ Ω

then 𝑎∈Ω 𝑓(𝑎)/𝑔(𝑎) = 1

ZKP MOOC

(4) Another useful gadget: permutation check

Let 𝑓, 𝑔 be polynomials in 𝔽𝑝
(≤𝑑)

𝑋 . Verifier has 𝑓 , 𝑔 .

Goal: prover wants to prove that (𝑓 1 , 𝑓 𝜔 , 𝑓 𝜔2 , … , 𝑓(𝜔𝑘−1)) ∈ 𝔽𝑝
𝑘

is a permutation of (𝑔 1 , 𝑔 𝜔 , 𝑔 𝜔2 , … , 𝑔(𝜔𝑘−1)) ∈ 𝔽𝑝
𝑘

⇒ Proves that 𝑔(Ω) is the same as 𝑓(Ω), just permuted

ZKP MOOC

Let 𝑓 𝑋 = 𝑎∈Ω(𝑋 − 𝑓 𝑎) and 𝑔 𝑋 = 𝑎∈Ω(𝑋 − 𝑔 𝑎)

A public coin
protocol

Prover P(𝑓, 𝑔) Verifier V(𝑓 , 𝑔)

Then: 𝑓 𝑋 = 𝑔 𝑋 ⟺ 𝑔 is a permutation of 𝑓

𝑟

prove that 𝑓 𝑟 = 𝑔 𝑟
prod-check:

accept or reject
[Lipton’s trick, 1989]

implies 𝑓 𝑋 = 𝑔 𝑋 w.h.p

(4) Another useful gadget: permutation check

𝑟 ⇽ 𝔽𝑝
$

[two commits, six evals]

ZKP MOOC

(5) final gadget: prescribed permutation check

𝑊: Ω ⇾ Ω is a permutation of Ω if ∀𝑖 ∈ 𝑘 : 𝑊(𝜔𝑖) = 𝜔𝑗 is a bijection

example (𝑘 = 3): 𝑊 𝜔0 = 𝜔2 , 𝑊 𝜔1 = 𝜔0 , 𝑊(𝜔2) = 𝜔1

Let 𝑓, 𝑔 be polynomials in 𝔽𝑝
(≤𝑑)

[𝑋] . Verifier has 𝑓 , 𝑔 , 𝑊 .

Goal: prover wants to prove that 𝑓(𝑦) = 𝑔(𝑊(𝑦)) for all 𝑦 ∈ Ω

⇒ Proves that 𝑔(Ω) is the same as 𝑓(Ω), permuted by the prescribed 𝑊

ZKP MOOC

Prescribed permutation check

How? Use a zero-test to prove 𝑓 𝑦 − 𝑔 𝑊 𝑦 = 0 on Ω

The problem: the polynomial 𝑓 𝑦 − 𝑔 𝑊 𝑦 has degree k2

⇒ prover would need to manipulate polynomials of degree k2

⇒ quadratic time prover !! (goal: linear time prover)

Let’s reduce this to a prod-check on a polynomial of degree 2𝑘 (not 𝑘2)

ZKP MOOC

Prescribed permutation check

Observation:

if 𝑊(𝑎), 𝑓 𝑎
𝑎∈Ω

is a permutation of 𝑎, 𝑔 𝑎
𝑎∈Ω

then 𝑓(𝑦) = 𝑔(𝑊(𝑦)) for all 𝑦 ∈ Ω

Proof by example: 𝑊 𝜔0 = 𝜔2 , 𝑊 𝜔1 = 𝜔0 , 𝑊(𝜔2) = 𝜔1

Right tuple: (ω0,g(ω0)), (ω1,g(ω1)), (ω2,g(ω2))

Left tuple: (ω2 ,f(ω0)), (ω0 ,f(ω1)), (ω1,f(ω2))

ZKP MOOC

Prescribed permutation check

Prover P(𝑓, 𝑔, 𝑊) Verifier V(𝑓 , 𝑔 , W)

Let 𝑓 𝑋, 𝑌 = 𝑎∈Ω (𝑋 − 𝑌 ∙ 𝑊 𝑎 − 𝑓 𝑎) and

 𝑔 𝑋, 𝑌 = 𝑎∈Ω (𝑋 − 𝑌 ∙ 𝑎 − 𝑔 𝑎)

Lemma: 𝑓 𝑋, 𝑌 = 𝑔 𝑋, 𝑌 ⟺ 𝑊(𝑎), 𝑓 𝑎
𝑎∈Ω

is a perm. of 𝑎, 𝑔 𝑎
𝑎∈Ω

(bivariate polynomials of total degree 𝑘)

To prove, use the fact that 𝔽𝑝 𝑋, 𝑌 is a unique factorization domain

ZKP MOOC

The complete protocol

Prover P(𝑓, 𝑔, 𝑊) Verifier V(𝑓 , 𝑔 , W)

𝑟, 𝑠

accept or reject

ProdCheck:

Complete and sound, assuming 2𝑑/𝑝 is negligible.

implies 𝑓 𝑋, 𝑌 = 𝑔 𝑋, 𝑌 w.h.p

by Schwartz-
Zippel

prove that 𝑓 𝑟, 𝑠 = 𝑔 𝑟, 𝑠 :

𝑟, 𝑠 ⇽ 𝔽𝑝
$

ZKP MOOC

Summary of proof gadgets

prescribed permutation check

permutation check

product check, sum check

zero test on Ω

polynomial equality testing

Credit: Faithie/Shutterstock

ZKP MOOC

The PLONK IOP
for general circuits

eprint/2019/953

ZKP MOOC

PLONK: widely used in practice

The Plonk
IOP

KZG’10
(pairings)

Aztec, JellyFish

Halo2
(slow verifier)
(no trusted setup)

Bulletproofs
(no pairings)

Plonky2
(no trusted setup)

FRI
(hashing)

polynomial commitment scheme SNARK system

ZKP MOOC

PLONK: a poly-IOP for a general circuit 𝐶(𝑥, 𝑤)

The computation trace (arithmetization):

𝑥1 𝑥2 𝑤1

+ +

×

(𝑥1 + 𝑥2)(𝑥2 + 𝑤1)

77 inputs: 5, 6, 1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

5 6 1 example input

11

5 6

7

6
1

left
inputs

right
inputs

outputs

Step 1: compile circuit to a computation trace (gate fan-in = 2)

(Gate 0) (Gate 1)

(Gate 2)

ZKP MOOC

Encoding the trace as a polynomial

|𝐶| ≔ total # of gates in 𝐶 , |𝐼| ≔ |𝐼𝑥| + |𝐼𝑤| = # inputs to 𝐶

let 𝑑 ≔ 3 𝐶 + |𝐼| (in example, 𝑑 = 12) and Ω ≔ { 1, 𝜔, 𝜔2, …, 𝜔𝑑−1 }

The plan:

prover interpolates a polynomial 𝑇 ∈ 𝔽𝑝
(≤𝑑)

[X]

that encodes the entire trace.

inputs: 5, 6, 1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77
Let’s see how …

ZKP MOOC

Encoding the trace as a polynomial

The plan: Prover interpolates 𝑇 ∈ 𝔽𝑝
(≤𝑑)

[X] such that

(1) 𝑻 encodes all inputs: T(𝜔−𝑗) = input #𝑗 for 𝑗 = 1, …, |𝐼|

(2) 𝑻 encodes all wires: ∀ 𝑙 = 0, … , 𝐶 − 1:

 T(𝜔3𝑙): left input to gate #𝑙

 T(𝜔3𝑙+1): right input to gate #𝑙

 T(𝜔3𝑙+2): output of gate #𝑙

inputs: 5, 6, 1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

ZKP MOOC

Encoding the trace as a polynomial

In our example, Prover interpolates 𝑇(𝑋) such that:

inputs: T(𝜔−1) = 5, T(𝜔−2) = 6, T(𝜔−3) = 1,

gate 0: T(𝜔0) = 5, T(𝜔1) = 6, T(𝜔2) = 11,

gate 1: T(𝜔3) = 6, T(𝜔4) = 1, T(𝜔5) = 7,

gate 2: T(𝜔6) = 11, T(𝜔7) = 7, T(𝜔8) = 77

degree(𝑇) = 11

Prover can use FFT to compute the coefficients of T
in time O(𝑑 log 𝑑)

inputs: 5, 6, 1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

ZKP MOOC

Step 2: proving validity of T

Prover P(𝑆𝑝, 𝒙, 𝐰) Verifier V(𝑆𝑣, 𝒙)

build T(𝑋) ∈ 𝔽𝑝
(≤𝑑)

[X]
𝑇

Prover needs to prove that T is a correct computation trace:

(1) T encodes the correct inputs,

(2) every gate is evaluated correctly,

(3) the wiring is implemented correctly,

(4) the output of last gate is 0

Proving (4) is easy: prove 𝑇(𝜔3 𝐶 −1) = 0

inputs: 5 , 6, 1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

(wiring constraints)

ZKP MOOC

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial 𝑣(𝑋) ∈ 𝔽𝑝
(≤|𝐼𝑥|)

[X]

that encodes the 𝑥-inputs to the circuit:

for 𝑗 = 1, . . . , |𝐼𝑥|: 𝑣(𝜔−𝑗) = input #j

In our example: 𝑣 𝜔−1 = 5, 𝑣 𝜔−2 = 6 . (𝑣 is linear)

constructing 𝑣(𝑋) takes time proportional to the size of input 𝑥

⇒ verifier has time do this

ZKP MOOC

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial 𝑣(𝑋) ∈ 𝔽𝑝
(≤|𝐼𝑥|)

[X]

that encodes the 𝑥-inputs to the circuit:

for 𝑗 = 1, . . . , |𝐼𝑥|: 𝑣(𝜔−𝑗) = input #j

Let Ωinp ≔ { 𝜔−1, 𝜔−2, … , 𝜔− 𝐼𝑥 } ⊆ Ω (points encoding the input)

Prover proves (1) by using a ZeroTest on Ωinp to prove that

T(y) − 𝑣(y) = 0 ∀ y ∈ Ωinp

ZKP MOOC

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial S(X)

define S(X) ∈ 𝔽𝑝
(≤𝑑)

[X] such that ∀ 𝑙 = 0, … , 𝐶 − 1:

S(𝜔3𝑙) = 1 if gate #𝑙 is an addition gate

S(𝜔3𝑙) = 0 if gate #𝑙 is a multiplication gate

𝑥1 𝑥2 𝑤1

+ +

×

(Gate 0) (Gate 1)

(Gate 2)

inputs: 5 , 6, 1 𝑆(𝑋)

Gate 0 (𝜔0): 5 , 6 , 11 1

Gate 1 (𝜔3): 6 , 1 , 7 1

Gate 2 (𝜔6): 11, 7, 77 0

(+)
(+)
(×)

ZKP MOOC

Proving (2): every gate is evaluated correctly

T(𝜔2y)

Then ∀ y ∈ Ωgates ≔ { 1, 𝜔3, 𝜔6, 𝜔9, …, 𝜔3(𝐶 −1) } :

S(y)⋅[T(y) + T(𝝎𝐲)] + (1 – S(y))⋅T(y)⋅T(𝝎𝐲) =

left input right input outputleft input right input

Idea: encode gate types using a selector polynomial S(X)

define S(X) ∈ 𝔽𝑝
(≤𝑑)

[X] such that ∀ 𝑙 = 0, … , 𝐶 − 1:

S(𝜔3𝑙) = 1 if gate #𝑙 is an addition gate

S(𝜔3𝑙) = 0 if gate #𝑙 is a multiplication gate

ZKP MOOC

Proving (2): every gate is evaluated correctly

S(y)⋅[T(y) + T(𝜔y)] + (1 – S(y))⋅T(y)⋅T(𝜔y) − T(𝜔2y) = 0

Prover P(𝑝𝑝, 𝒙, 𝐰) Verifier V(𝑣𝑝, 𝒙)

build T(𝑋) ∈ 𝔽𝑝
(≤𝑑)

[X]
𝑇

Setup(𝐶) ⇾ 𝑝𝑝≔S and 𝑣𝑝≔ (S)

Prover uses ZeroTest to prove that for all ∀ y ∈ Ωgates :

ZKP MOOC

Proving (3): the wiring is correct

Step 4: encode the wires of 𝐶:

T(𝜔-2) = T(𝜔1) = T(𝜔3)

T(𝜔-1) = T(𝜔0)

T(𝜔2) = T(𝜔6)

T(𝜔-3) = T(𝜔4)

example: x1=5, x2=6 , 𝑤1=1

𝜔-1, 𝜔-2, 𝜔-3 : 5, 6, 1

𝜔0, 𝜔1, 𝜔2 : 5, 6, 11

𝜔3, 𝜔4, 𝜔5 : 6, 1, 7

𝜔6, 𝜔7, 𝜔8 : 11, 7, 77

0:

1:

2:

Lemma: ∀ 𝑦∈Ω : T(𝑦) = T(W(𝑦)) ⇒ wire constraints are satisfied

Define a polynomial W: Ω ⇾ Ω that implements a rotation:
W(𝜔-2, 𝜔1 , 𝜔3) = (𝜔1, 𝜔3, 𝜔-2) , W(𝜔-1, 𝜔0) = (𝜔0 , 𝜔-1) , …

ZKP MOOC

Proving (3): the wiring is correct

Step 4: encode the wires of 𝐶:

T(𝜔-2) = T(𝜔1) = T(𝜔3)

T(𝜔-1) = T(𝜔0)

T(𝜔2) = T(𝜔6)

T(𝜔-3) = T(𝜔4)

example: x1=5, x2=6 , 𝑤1=1

𝜔-1, 𝜔-2, 𝜔-3 : 5, 6, 1

𝜔0, 𝜔1, 𝜔2 : 5, 6, 11

𝜔3, 𝜔4, 𝜔5 : 6, 1, 7

𝜔6, 𝜔7, 𝜔8 : 11, 7, 77

0:

1:

2:

Lemma: ∀ 𝑦∈Ω : T(𝑦) = T(W(𝑦)) ⇒ wire constraints are satisfied

Define a polynomial W: Ω ⇾ Ω that implements a rotation:
W(𝜔-2, 𝜔1 , 𝜔3) = (𝜔1, 𝜔3, 𝜔-2) , W(𝜔-1, 𝜔0) = (𝜔0 , 𝜔-1) , …

Proved using a prescribed permutation check

ZKP MOOC

The complete Plonk Poly-IOP (and SNARK)

Setup(𝐶) ⇾ 𝑝𝑝 ≔ (𝑆,𝑊) and 𝑣𝑝 ≔ (𝑆 and 𝑊) (untrusted)

Prover proves:

(1) S(y)⋅[T(y) + T(𝜔y)] + (1 – S(y))⋅T(y)⋅T(𝜔y) − T(𝜔2y) = 0 ∀ y ∈ Ωgates

(2) T(y) − 𝑣(y) = 0 ∀ y ∈ Ωinp

(3) T(y) − T(𝑊(y)) = 0 (using prescribed perm. check) ∀ y ∈ Ω

(4) T(𝜔3 𝐶 −1) = 0 (output of last gate = 0)

gates:

inputs:

wires:

output:

Prover P(𝑝𝑝, 𝒙, 𝐰) Verifier V(𝑣𝑝, 𝒙)

build 𝑣(𝑋) ∈ 𝔽𝑝
(≤|𝐼𝑥|)

[X]build T(𝑋) ∈ 𝔽𝑝
(≤𝑑)

[X]
𝑇

ZKP MOOC

The complete Plonk Poly-IOP (and SNARK)

Setup(𝐶) ⇾ 𝑝𝑝 ≔ (S,W) and 𝑣𝑝 ≔ (S and W)

Prover P(𝑝𝑝, 𝒙, 𝐰) Verifier V(𝑣𝑝, 𝒙)

build 𝑣(𝑋) ∈ 𝔽𝑝
(≤|𝐼𝑥|)

[X]build T(𝑋) ∈ 𝔽𝑝
(≤𝑑)

[X]
𝑇

Thm: The Plonk Poly-IOP is complete and knowledge sound,

assuming 7|𝐶|/𝑝 is negligible
(eprint/2019/953)

ZKP MOOC

Many extensions …

 Plonk proof: a short proof (O(1) commitments), fast verifier

 The SNARK can easily be made into a zk-SNARK

Main challenge: reduce prover time

 Hyperplonk: replace Ω with 0,1 𝑡 (where 𝑡 = log2|Ω|)

 The polynomial T is now a multilinear polynomial in 𝑡 variables

 ZeroTest is replaced by a multilinear SumCheck (linear time)

ZKP MOOC

A generalization: plonkish arithmetization

Plonk for circuits with gates other than + and × on rows:

Plonkish computation trace: (also used in AIR)
u1 v1 w1 t1 r1 s1

u2 v2 w2 t2 r2 s2

u3 v3 w3 t3 r3 s3

u4 v4 w4 t4 r4 s4

u5 v5 w5 t5 r5 s5

u6 v6 w6 t6 r6 s6

u7 v7 w7 t7 r7 s7

u8 v8 w8 t8 r8 s8

output
Plookup: ensure some values are in a pre-defined list

∀ 𝑦 ∈ Ωgates: 𝑣 𝑦𝜔 + 𝑤(𝑦) ∙ 𝑡(𝑦) − 𝑡 𝑦𝜔 = 0

An example custom gate:

All such gate checks are included in the gate check

Credit: Faithie/Shutterstock

ZKP MOOC

END OF LECTURE

Next lecture:
More polynomial commitments

