Zero Knowledge Proofs

The Plonk SNARK

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

Stanford University

Berkeley

GEORGETOWJC UNIVERSITY

Let's build an efficient SNARK

First, a review of polynomial commitments

Prover commits to a polynomial $f(X)$ in $\mathbb{F}_{p}^{(\leq d)}[X]$

- eval: for public $u, v \in \mathbb{F}_{p}$, prover can convince the verifier that committed poly satisfies

$$
f(u)=v \text { and } \operatorname{deg}(f) \leq d . \quad \text { verifier has }\left(d, \operatorname{com}_{f}, u, v\right)
$$

- Eval proof size and verifier time should be $O_{\lambda}(\log d)$

The KZG poly-commit scheme (Kate-Zaverucha-Goldberg'2010)

Group $\mathbb{G}:=\{0, G, 2 \cdot G, 3 \cdot G, \ldots,(p-1) \cdot G\}$ of order p.
setup $\left(1^{\lambda}\right) \rightarrow g p:$

- Sample random $\tau \in \mathbb{F}_{p}$
- $g p=\left(H_{0}=G, H_{1}=\tau \cdot G, H_{2}=\tau^{2} \cdot G, \ldots, H_{d}=\tau^{d} \cdot G\right) \in \mathbb{G}^{d+1}$
- delete τ !! (trusted setup)
commit $(g p, f) \rightarrow \operatorname{com}_{f}$ where $\operatorname{com}_{f}:=f(\tau) \cdot G \in \mathbb{G}$
- $f(X)=f_{0}+f_{1} X+\cdots+f_{d} X^{d} \Rightarrow \operatorname{com}_{f}=f_{0} \cdot H_{0}+\cdots+f_{d} \cdot H_{d}$

$$
=f_{0} \cdot G+f_{1} \tau \cdot G+f_{2} \tau^{2} \cdot G+\cdots=f(\tau) \cdot G
$$

The KZG poly-commpit scheme (Kate-Zaverucha-Goldberg'2010)

Group $\mathbb{G}:=\{0, G, 2 \cdot G, 3 \cdot G, \ldots,(p-1) \cdot G\}$ of order p.
$\operatorname{setup}\left(1^{\lambda}\right) \rightarrow g p:$

- Sample random $\tau \in \mathbb{F}_{p}$
a binding commitment, but not hiding
- $g p=\left(H_{0}=G, H_{1}=\tau \cdot G, H_{2}=\tau^{2} \cdot G, \ldots, H_{d}=\tau^{d} \cdot G\right) \in \mathbb{G}^{d+1}$
- delete τ !! (trusted setup)
commit $(g p, f) \rightarrow \operatorname{com}_{f}$ where $\operatorname{com}_{f}:=f(\tau) \cdot G \in \mathbb{G}$
- $f(X)=f_{0}+f_{1} X+\cdots+f_{d} X^{d} \Rightarrow \operatorname{com}_{f}=f_{0} \cdot H_{0}+\cdots+f_{d} \cdot H_{d}$

$$
=f_{0} \cdot G+f_{1} \tau \cdot G+f_{2} \tau^{2} \cdot G+\cdots=f(\tau) \cdot G
$$

The KZG poly-commit scheme (Katezzevenctaragodiderg 20101

commit $(g p, f) \rightarrow \operatorname{com}_{f} \quad$ where $\quad \operatorname{com}_{f}=f(\tau) \cdot G \in \mathbb{G}$
eval: \quad Prover (gp, $f, u, v)$
Goal: prove $f(u)=v$
Verifier $\left(g p, \boldsymbol{c o m}_{f}, u, v\right)$

$$
\begin{aligned}
& f(u)=v \Leftrightarrow u \text { is a root of } \hat{f}:=f-v \quad \Leftrightarrow(X-u) \text { divides } \hat{f} \\
& \Leftrightarrow \text { exists } q \in \mathbb{F}_{p}[X] \text { s.t. } q(X) \cdot(X-u)=f(X)-v
\end{aligned}
$$

The KZG poly-commit scheme

eval: \quad Prover (gp, $f, u, v)$
Goal: prove $f(u)=v \quad$ Verifier $\left(g p, \operatorname{com}_{f} u, v\right)$

$$
\begin{aligned}
f(u)=v \quad(\tau-u) q(\tau) \cdot G \stackrel{?}{=}(f(\tau)-v) \cdot G \quad \text { livides } \hat{f} \\
\Leftrightarrow \text { exists } q
\end{aligned}
$$

The KZG poly-commit scheme

con How to prove that this is a secure PCS? Not today ... $\equiv \mathbb{G}$
eval: \quad Prover $(g p, f, u, v)$
An expensive computation for large d

Goal: prove $f(u)=v$
$\left.\underline{\operatorname{Verifier}\left(g p, \operatorname{com}_{f}\right.} \boldsymbol{u}, v\right)$
of Verifier does not know $\tau \Rightarrow$ uses a "pairing" (and only needs H_{0}, H_{1} from gp)
compute $q(X)$
$\pi:=\operatorname{com}_{q} \in \mathbb{G}$
(proof size indep. of deg. d)
$(\tau-u) \cdot \operatorname{com}_{q}=\operatorname{com}_{f}-v \cdot G$

The KZG poly-commit scheme

Generalizations:

- Can also use KZG to commit to k-variate polynomials [PST ${ }^{13]}$
- Batch proofs:
- suppose verifier has commitments $\operatorname{com}_{f 1}, \ldots \boldsymbol{c o m}_{f n}$
- prover wants to prove $f_{i}\left(u_{i, j}\right)=v_{i, j}$ for $i \in[n], j \in[m]$
\Rightarrow batch proof π is only one group element!

Properties of KZG: linear time commitment

Two ways to represent a polynomial $f(X)$ in $\mathbb{F}_{p}^{(\leq d)}[X]$:

- Coefficient representation: $f(X)=f_{0}+f_{1} X+\cdots+f_{d} X^{d}$
\Rightarrow computing $\operatorname{com}_{f}=f_{0} \cdot H_{0}+\cdots+f_{d} \cdot H_{d}$ takes linear time in d
- Point-value representation: $\left(a_{0}, f\left(a_{0}\right)\right), \ldots,\left(a_{d}, f\left(a_{d}\right)\right)$ computing com_{f} naively: construct coefficients $\left(f_{0}, f_{1}, \ldots, f_{d}\right)$
\Rightarrow time $O(d \log d)$ using Num. Th. Transform (NTT)

Properties of KZG: linear time commitment

Point-value representation: a better way to compute com_{f}

Lagrange interpolation: $f(\tau)=\sum_{i=0}^{d} \lambda_{i}(\tau) \cdot f\left(a_{i}\right)$ where

$$
\lambda_{i}(\tau)=\frac{\prod_{j=0, j \neq i}^{d}\left(\tau-a_{j}\right)}{\prod_{j=0, j \neq i}^{d}\left(a_{i}-a_{j}\right)} \in \mathbb{F}_{p}
$$

- Idea: transform gp into Lagrange form (a linear map)

$$
\widehat{g p}=\left(\hat{H}_{0}=\lambda_{0}(\tau) \cdot G, \quad \hat{H}_{1}=\lambda_{1}(\tau) \cdot G, \quad \ldots, \quad \hat{H}_{d}=\lambda_{d}(\tau) \cdot G\right) \in \mathbb{G}^{d+1}
$$

- Now, $\operatorname{com}_{f}=f(\tau) \cdot \mathrm{G}=f\left(a_{0}\right) \cdot \widehat{H}_{0}+\cdots+f\left(a_{d}\right) \cdot \widehat{H}_{d}$
\Rightarrow linear time in $d . \quad($ better than $\mathrm{O}(d \log d))$

KZG fast multi-point proof generation

Prover has some $f(X)$ in $\mathbb{F}_{p}^{(\leq d)}[X] . \quad$ Let $\Omega \subseteq \mathbb{F}_{p}$ and $|\Omega|=d$
Suppose prover needs evaluation proofs $\pi_{a} \in G$ for all $a \in \Omega$

- Naively, takes time $O\left(d^{2}\right)$: d proofs each takes time $O(d)$
- Feist-Khovratovich (FK) algorithm (2020):
- if Ω is a multiplicative subgroup: time $O(d \log d)$
- otherwise: time $O\left(d \log ^{2} d\right)$

The Dory polynomial commitment

Difficulties with KZG: trusted setup for $g p$, and $g p$ size is linear in d.

Dory:

- transparent setup: no secret randomness in setup
- com $_{f}$ is a single group element (independent of degree d)
- eval proof size for $f \in \mathbb{F}_{p}^{(\leq d)}[X]$ is $\mathrm{O}(\log d)$ group elements
- eval verify time is $\mathrm{O}(\log d) \quad$ Prover time: $O(d)$

PCS have many applications

Example: vector commitment (a drop-in replacement for Merkle trees)

\(\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}Bob: vector\left(u_{1}, ···, u_{k}\right) \in \mathbb{F}_{p}^{(\leq d)}

interpolate poly f s.t.:

f(i)=u_{i} for i=1, ···, k\end{array} \& \operatorname{com}_{f}:=\operatorname{commit}(g p, f)\end{array}\right]\)\begin{tabular}{c}
Alice

\hline | $\pi:=$ eval proof that $f(2)=a, f(4)=b$ |
| :---: |
| (KZG: π is a single group element) |
| shorter than a Merkle proof! |

\end{tabular}

Proving properties of committed polynomials

Proving properties of committed polynomials

Prover $\mathrm{P}(f, g)$

Goal: convince verifier that $f, g \in \mathbb{F}_{p}^{(\leq d)}[X]$ satisfy some properties
Proof systems presented as an IOP:

query $f(X), g(X), q(X)$ at some points in \mathbb{F}_{p} [V sends x to P who responds with $f(x)$ and eval proof π] accept or reject

Recall: polynomial equality testing

Suppose $p \approx 2^{256}$ and $d \leq 2^{40}$ so that d / p is negligible
Let $f, g \in \mathbb{F}_{p}^{(\leq d)}[X]$.
For $r s^{\underline{s}} \mathbb{F}_{p}$, if $f(r)=g(r)$ then $f=g \quad$ w.h.p

$$
f(r)-g(r)=0 \quad \Rightarrow \quad f-g=0 \quad \text { w.h.p }
$$

\Rightarrow a simple equality test for two committed polynomials

Review: the proof system as an IOP

Prover		Verifier
$\boldsymbol{f}, \boldsymbol{g} \in \mathbb{F}_{p}^{(\leq d)}[X]$	query $f(\mathrm{X})$ and $g(X)$ at r	$\begin{aligned} & \boxed{f} \quad g \\ & r \&^{s} \mathbb{F}_{p} \end{aligned}$
		$\text { learn } f(r), \mathrm{g}(r)$ accept if: $f(r)=\mathrm{g}(r)$

Review: the compiled proof system

Prover
$f, g \in \mathbb{F}_{p}^{(\leq d)}[X]$

$$
\begin{gathered}
y \hookleftarrow f(r) \\
y^{\prime} \leftarrow g(r)
\end{gathered}
$$

Verifier

$$
\begin{aligned}
& f / g \\
& r \stackrel{s}{s}^{\frac{s}{2}} \mathbb{F}_{p}
\end{aligned}
$$

accept if:
(i) $y=y^{\prime}$, and
(ii) π_{f}, π_{g} are valid

Review: the compiled proof system

Polynomial equality testing with KZG

For KZG: $\quad f=g \Leftrightarrow \operatorname{com}_{f}=\operatorname{com}_{g}$
\Rightarrow verifier can tell if $f=g$ on its own
But prover is needed to test equality of computed polynomials

- Example: verifier has f, g_{1}, g_{2}, g_{3} where all four are in $\mathbb{F}_{p}^{(\leq d)}[X]$ to test if $f=g_{1} g_{2} g_{3}$: \mathbf{V} queries all four poly. at $r \& \mathbb{F}_{p}$ and tests equality
- Complete and sound assuming $3 d / p$ is negligible $\left(\operatorname{deg}\left(g_{1} g_{2} g_{3}\right) \leq 3 d\right)$

Important proof gadgets for univariates

Let Ω be some subset of \mathbb{F}_{p} of size k.
Let $f \in \mathbb{F}_{p}^{(\leq d)}[X] \quad(d \geq k)$
Verifier has f
Let us construct efficient Poly-IOPs for the following tasks:
Task 1 (ZeroTest): \quad prove that f is identically zero on Ω
Task 2 (SumCheck): prove that $\sum_{a \in \Omega} f(a)=0$
Task 3 (ProdCheck): prove that $\prod_{a \in \Omega} f(a)=1$

The vanishing polynomial

Let Ω be some subset of \mathbb{F}_{p} of size k.
Def: the vanishing polynomial of Ω is $Z_{\Omega}(X):=\prod_{a \in \Omega}(X-a)$

$$
\operatorname{deg}\left(Z_{\Omega}\right)=k
$$

Let $\omega \in \mathbb{F}_{p}$ be a primitive k-th root of unity (so that $\omega^{k}=1$).

- if $\Omega=\left\{1, \omega, \omega^{2}, \ldots, \omega^{k-1}\right\} \subseteq \mathbb{F}_{p}$ then $Z_{\Omega}(X)=X^{k}-1$
\Rightarrow for $r \in \mathbb{F}_{p}$, evaluating $Z_{\Omega}(r)$ takes $\leq 2 \log _{2} k$ field operations

(1) ZeroTest on $\Omega \quad\left(\Omega=\left\{1, \omega, \omega^{2}, \ldots, \omega^{k-1}\right\}\right)$

Thm: this protocol is complete and sound, assuming d / p is negligible.

(1) ZeroTest on $\Omega \quad\left(\Omega=\left\{1, \omega, \omega^{2}, \ldots, \omega^{k-1}\right\}\right)$

Verifier time: $\mathrm{O}(\log k)$ and two poly queries (but can be done in one)
Prover time: dominated by the time to compute $q(X)$ and then commit to $q(X)$

(3) Product check on $\Omega: \quad \prod_{a \in \Omega} f(a)=1$

Set $t \in \mathbb{F}_{p}^{(\leq k)}[X]$ to be the degree- k polynomial:

$$
t(1)=f(1), \quad t\left(\omega^{s}\right)=\prod_{i=0}^{S} f\left(\omega^{\mathrm{i}}\right) \quad \text { for } s=1, \ldots, k-1
$$

Then

$$
\begin{aligned}
& \mathrm{t}(\omega)=f(1) \cdot f(\omega), \quad \mathrm{t}\left(\omega^{2}\right)=f(1) \cdot f(\omega) \cdot f\left(\omega^{2}\right), \\
& \mathrm{t}\left(\omega^{k-1}\right)=\prod_{a \in \Omega} f(a)=1
\end{aligned}
$$

and $t(\omega \cdot \mathrm{x})=t(x) \cdot f(\omega \cdot \mathrm{x}) \quad$ for all $x \in \Omega \quad$ (including at $\left.x=\omega^{k-1}\right)$

(3) Product check on $\Omega: \quad \prod_{a \in \Omega} f(a)=1$

Set $t \in \mathbb{F}_{p}^{(\leq k)}[X]$ to be the degree- k polynomial:

$$
t(1)=f(1), \quad t\left(\omega^{s}\right)=\prod_{i=0}^{S} f\left(\omega^{\mathrm{i}}\right) \quad \text { for } s=1, \ldots, k-1
$$

Lemma: if (i) $t\left(\omega^{k-1}\right)=1$ and
(ii) $t(\omega \cdot \mathrm{x})-t(x) \cdot f(\omega \cdot \mathrm{x})=0 \quad$ for all $\quad x \in \Omega$
then $\prod_{a \in \Omega} f(a)=1$

(3) Product check on Ω (unoptimized)

Prover $\mathrm{P}(f)$

construct $t(X) \in \mathbb{F}_{p}^{(\leq k)}$ and $t_{1}(X)=t(\omega \cdot X)-t(X) \cdot f(\omega \cdot X)$
set $q(X)=t_{1}(X) /\left(X^{k}-1\right) \in \mathbb{F}_{p}^{(\leq d)}$
$t_{1}(X)$ should be zero on Ω

proves that $t_{1}(\Omega)=0$:
learn $t\left(\omega^{k-1}\right), \quad t(r), t(\omega r), q(r), f(\omega r)$

$$
\begin{gathered}
\text { accept if } t\left(\omega^{k-1}\right) \stackrel{?}{=} 1 \quad \text { and } \\
t(\omega r)-t(r) f(\omega r) \stackrel{?}{=} q(r) \cdot\left(r^{k}-1\right)
\end{gathered}
$$

(3) Product check on Ω (unoptimized)

Prover $\mathrm{P}(f)$

construct $t(X) \in \mathbb{F}_{p}^{(\leq k)}$ and $t_{1}(X)=t(\omega \cdot X)-t(X) \cdot f(\omega \cdot X)$ set $q(X)=t_{1}(X) /\left(X^{k}-1\right) \in \mathbb{F}_{p}^{(\leq d)}$

 $\stackrel{\text { query }}{\stackrel{\text { q }}{ }}(X)$ at r, and $f(X)$ at ωr
Proof size: two commits, five evals. Verifier time: $O(\log k)$. Prover time: $O(k \log k)$.

Same works for rational functions: $\prod_{a \in \Omega}(f / g)(a)=1$
Prover $\mathrm{P}(f, g)$

Verifier $\vee(f, g)$

Set $t \in \mathbb{F}_{p}^{(\leq k)}[X]$ to be the degree- k polynomial:

$$
t(1)=f(1) / g(1), \quad t\left(\omega^{s}\right)=\prod_{i=0}^{S} f\left(\omega^{\mathrm{i}}\right) / g\left(\omega^{\mathrm{i}}\right) \quad \text { for } \quad s=1, \ldots, k-1
$$

Lemma: if (i) $t\left(\omega^{k-1}\right)=1$ and
(ii) $t(\omega \cdot \mathrm{x}) \cdot g(\omega \cdot \mathrm{x})=t(x) \cdot f(\omega \cdot \mathrm{x})$ for all $x \in \Omega$
then $\quad \prod_{a \in \Omega} f(a) / g(a)=1$

(4) Another useful gadget: permutation check

Let f, g be polynomials in $\mathbb{F}_{p}^{(\leq d)}[X] . \quad$ Verifier has f, g.

Goal: prover wants to prove that $\left(f(1), f(\omega), f\left(\omega^{2}\right), \ldots, f\left(\omega^{k-1}\right)\right) \in \mathbb{F}_{p}^{k}$ is a permutation of $\quad\left(g(1), g(\omega), g\left(\omega^{2}\right), \ldots, g\left(\omega^{k-1}\right)\right) \in \mathbb{F}_{p}^{k}$
\Rightarrow Proves that $g(\Omega)$ is the same as $f(\Omega)$, just permuted

(4) Another useful gadget: permutation check

Prover P (f, g)
 Verifier $V(f, g)$

Let $\hat{f}(X)=\prod_{a \in \Omega}(X-f(a)) \quad$ and $\quad \hat{g}(X)=\prod_{a \in \Omega}(X-g(a))$
Then: $\hat{f}(X)=\hat{g}(X) \Leftrightarrow g$ is a permutation of f

A public coin protocol

r s龁
prove that $\hat{f}(r)=\hat{g}(r)$ prod-check: $\frac{\hat{f}(r)}{\hat{g}(r)}=\prod_{a \in \Omega}\left(\frac{r-f(a)}{r-g(a)}\right)=1$
implies $\hat{f}(X)=\hat{g}(X)$ w.h.p [two commits, six evals] accept or reject

(5) final gadget: prescribed permutation check

$W: \Omega \rightarrow \Omega$ is a permutation of Ω if $\quad \forall i \in[k]: W\left(\omega^{i}\right)=\omega^{j}$ is a bijection example $(k=3): \quad W\left(\omega^{0}\right)=\omega^{2}, \quad W\left(\omega^{1}\right)=\omega^{0}, \quad W\left(\omega^{2}\right)=\omega^{1}$

Let f, g be polynomials in $\mathbb{F}_{p}^{(\leq d)}[X]$. Verifier has f, g, W.
Goal: prover wants to prove that $f(y)=g(W(y))$ for all $y \in \Omega$
\Rightarrow Proves that $g(\Omega)$ is the same as $f(\Omega)$, permuted by the prescribed W

Prescribed permutation check

How? Use a zero-test to prove $f(y)-g(W(y))=0$ on Ω
The problem: the polynomial $f(y)-g(W(y))$ has degree k^{2}
\Rightarrow prover would need to manipulate polynomials of degree k^{2}
\Rightarrow quadratic time prover !! (goal: linear time prover)

Let's reduce this to a prod-check on a polynomial of degree $2 k \quad$ (not k^{2})

Prescribed permutation check

Observation:

if $(W(a), f(a))_{a \in \Omega}$ is a permutation of $(a, g(a))_{a \in \Omega}$
then $f(y)=g(W(y))$ for all $y \in \Omega$
Proof by example: $W\left(\omega^{0}\right)=\omega^{2}, \quad W\left(\omega^{1}\right)=\omega^{0}, \quad W\left(\omega^{2}\right)=\omega^{1}$
Right tuple: $\quad\left(\omega^{0}, \mathrm{~g}\left(\omega^{0}\right)\right),\left(\omega^{1}, \mathrm{~g}\left(\omega^{1}\right)\right),\left(\omega^{2}, \mathrm{~g}\left(\omega^{2}\right)\right)$
Left tuple: $\quad\left(\omega^{2}, f\left(\omega^{0}\right)\right),\left(\omega^{0}, f\left(\omega^{1}\right)\right),\left(\omega^{1}, f\left(\omega^{2}\right)\right)$

Prescribed permutation check

Prover $\mathrm{P}(f, g, W)$
 Verifier $v(f, g, W)$

$$
\text { Let }\left\{\begin{array}{l}
\hat{f}(X, Y)=\prod_{a \in \Omega}(X-Y \cdot W(a)-f(a)) \quad \text { and } \\
\hat{g}(X, Y)=\prod_{a \in \Omega}(X-Y \cdot a-g(a))
\end{array}\right.
$$

(bivariate polynomials of total degree k)
Lemma: $\hat{f}(X, Y)=\hat{g}(X, Y) \quad \Leftrightarrow \quad(W(a), f(a))_{a \in \Omega}$ is a perm. of $(a, g(a))_{a \in \Omega}$ To prove, use the fact that $\mathbb{F}_{p}[X, Y]$ is a unique factorization domain

The complete protocol

Prover $\mathrm{P}(f, g, W)$
 Verifier $v(f, g, w)$
 $$
r, s \quad r, s s^{s} \mathbb{F}_{p}
$$

prove that $\hat{f}(r, s)=\hat{g}(r, s)$:

Complete and sound, assuming $2 d / p$ is negligible.

Summary of proof gadgets

polynomial equality testing

zero test on Ω

product check, sum check

permutation check

prescribed permutation check

The PLONK IOP for general circuits

eprint/2019/953

PLONK: widely used in practice

polynomial commitment scheme
SNARK system

PLONK: a poly-IOP for a general circuit $C(x, w)$

Step 1: compile circuit to a computation trace (gate fan-in = 2)

The computation trace (arithmetization):

Encoding the trace as a polynomial

$|C|:=$ total \# of gates in C,
 $|I|:=\left|I_{x}\right|+\left|I_{w}\right|=\#$ inputs to C

let $d:=3|C|+|I|$ (in example, $d=12$) and $\Omega:=\left\{1, \omega, \omega^{2}, \ldots, \omega^{d-1}\right\}$

The plan:

prover interpolates a polynomial $T \in \mathbb{F}_{p}^{(\leq d)}[\mathrm{X}]$ that encodes the entire trace.

inputs:	5,	6,	1
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Let's see how ...

Encoding the trace as a polynomial

The plan: Prover interpolates $T \in \mathbb{F}_{p}^{(\leq d)}[\mathrm{X}]$ such that (1) \boldsymbol{T} encodes all inputs: $\mathrm{T}\left(\omega^{-j}\right)=$ input $\# j$ for $j=1, \ldots,|I|$
(2) T encodes all wires: $\forall l=0, \ldots,|C|-1$:

- $\mathrm{T}\left(\omega^{3 l}\right)$: left input to gate \#l
- $\mathrm{T}\left(\omega^{3 l+1}\right)$: right input to gate \#l
- $\mathrm{T}\left(\omega^{3 l+2}\right)$: output of gate \#l

inputs:	5,	6,	1
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Encoding the trace as a polynomial

In our example, Prover interpolates $T(X)$ such that:

inputs:	$\mathrm{T}\left(\omega^{-1}\right)=5$,	$\mathrm{T}\left(\omega^{-2}\right)=6$,	$\mathrm{T}\left(\omega^{-3}\right)=1$,
gate 0:	$\mathrm{T}\left(\omega^{0}\right)=5$,	$\mathrm{T}\left(\omega^{1}\right)=6$,	$\mathrm{T}\left(\omega^{2}\right)=11$,
gate 1:	$\mathrm{T}\left(\omega^{3}\right)=6$,	$\mathrm{T}\left(\omega^{4}\right)=1$,	$\mathrm{T}\left(\omega^{5}\right)=7$,
gate 2:	$\mathrm{T}\left(\omega^{6}\right)=11$,	$\mathrm{T}\left(\omega^{7}\right)=7$,	$\mathrm{T}\left(\omega^{8}\right)=77$

$$
\text { degree }(T)=11
$$

Prover can use FFT to compute the coefficients of T in time $O(d \log d)$

inputs:	5,	6,	1
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Step 2: proving validity of T

Prover $\mathrm{P}\left(S_{p}, \boldsymbol{x}, \mathbf{w}\right)$

Verifier $\mathrm{V}\left(S_{\nu}, \boldsymbol{x}\right)$

build $\mathrm{T}(X) \in \mathbb{F}_{p}^{(\leq d)}[\mathrm{X}]$

Prover needs to prove that T is a correct computation trace:
(1) T encodes the correct inputs,
(2) every gate is evaluated correctly,
(3) the wiring is implemented correctly,
(4) the output of last gate is 0

Proving (4) is easy: prove $T\left(\omega^{3|C|-1}\right)=0$
(wiring constraints)

inputs:	5,	6,	1
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial $v(X) \in \mathbb{F}_{p}^{\left(\leq\left|I_{x}\right|\right)}[\mathrm{X}]$ that encodes the x-inputs to the circuit:

$$
\text { for } j=1, \ldots,\left|I_{x}\right|: \quad v\left(\omega^{-j}\right)=\text { input } \# j
$$

In our example: $v\left(\omega^{-1}\right)=5, \quad v\left(\omega^{-2}\right)=6 . \quad(v$ is linear $)$
constructing $v(X)$ takes time proportional to the size of input x
\Rightarrow verifier has time do this

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial $v(X) \in \mathbb{F}_{p}^{\left(\leq\left|I_{x}\right|\right)}[\mathrm{X}]$ that encodes the x-inputs to the circuit:

$$
\text { for } j=1, \ldots,\left|I_{x}\right|: \quad v\left(\omega^{-j}\right)=\text { input } \# j
$$

Let $\Omega_{\text {inp }}:=\left\{\omega^{-1}, \omega^{-2}, \ldots, \omega^{-\left|I_{x}\right|}\right\} \subseteq \Omega \quad$ (points encoding the input)
Prover proves (1) by using a ZeroTest on $\Omega_{\text {inp }}$ to prove that

$$
\mathrm{T}(\mathrm{y})-v(\mathrm{y})=0 \quad \forall \mathrm{y} \in \Omega_{\mathrm{inp}}
$$

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial $S(X)$

$$
\begin{gathered}
\text { define } \mathrm{S}(\mathrm{X}) \in \mathbb{F}_{p}^{(S d)}[\mathrm{X}] \text { such that } \forall l=0, \ldots,|C|-1 \text { : } \\
\mathrm{S}\left(\omega^{3 l}\right)=1 \text { if gate } \# l \text { is an addition gate } \\
\mathrm{S}\left(\omega^{3 l}\right)=0 \text { if gate } \# l \text { is a multiplication gate }
\end{gathered}
$$

inputs:	$\mathbf{5}$,	$\mathbf{6 ,}$	$\mathbf{1}$	$S(X)$
Gate $0\left(\omega^{0}\right):$	$\mathbf{5}$,	$\mathbf{6}$,	11	1
Gate $1\left(\omega^{3}\right):$	6,	1,	7	1
Gate $2\left(\omega^{6}\right):$	$\mathbf{1 1}$,	$\mathbf{7}$,	77	0

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial $\mathrm{S}(\mathrm{X})$

$$
\begin{gathered}
\text { define } \mathrm{S}(\mathrm{X}) \in \mathbb{F}_{p}^{(\leq d)}[\mathrm{X}] \text { such that } \forall l=0, \ldots,|C|-1 \text { : } \\
\mathrm{S}\left(\omega^{3 l}\right)=1 \text { if gate } \# l \text { is an addition gate } \\
\mathrm{S}\left(\omega^{3 l}\right)=0 \text { if gate } \# l \text { is a multiplication gate }
\end{gathered}
$$

Then $\forall \mathrm{y} \in \Omega_{\text {gates }}:=\left\{1, \omega^{3}, \omega^{6}, \omega^{9}, \ldots, \omega^{3(|C|-1)}\right\}$:

$$
S(y) \cdot[T(y)+T(\omega y)]+(1-S(y)) \cdot T(y) \cdot T(\omega y)=T\left(\omega^{2} y\right)
$$

left input
right input
left input
right input
output

Proving (2): every gate is evaluated correctly

```
Setup(C) }->pp:=\textrm{S}\mathrm{ and vp:=(\S)
```

Prover $\mathrm{P}(p p, \boldsymbol{x}, \mathbf{w})$
build $\mathrm{T}(X) \in \mathbb{F}_{p}^{(\leq d)}[\mathrm{X}]$
Verifier $\mathrm{V}(v p, \boldsymbol{x})$

Prover uses ZeroTest to prove that for all $\forall \mathrm{y} \in \Omega_{\text {gates }}$:

$$
S(y) \cdot[T(y)+T(\omega y)]+(1-S(y)) \cdot T(y) \cdot T(\omega y)-T\left(\omega^{2} y\right)=0
$$

Proving (3): the wiring is correct

Step 4: encode the wires of C :

$$
\left\{\begin{array}{l}
\mathrm{T}\left(\omega^{-2}\right)=\mathrm{T}\left(\omega^{1}\right)=\mathrm{T}\left(\omega^{3}\right) \\
\mathrm{T}\left(\omega^{-1}\right)=\mathrm{T}\left(\omega^{0}\right) \\
\mathrm{T}\left(\omega^{2}\right)=\mathrm{T}\left(\omega^{6}\right) \\
\mathrm{T}\left(\omega^{-3}\right)=\mathrm{T}\left(\omega^{4}\right)
\end{array}\right.
$$

$$
\begin{array}{ll}
& \omega^{-1}, \omega^{-2}, \omega^{-3}: 5,6,1 \\
0: & \omega^{0}, \omega^{1}, \omega^{2}: 5,6,11 \\
1: & \omega^{3}, \omega^{4}, \omega^{5}: 6,1,7 \\
2: & \omega^{6}, \omega^{7}, \omega^{8}: 11,7,77
\end{array}
$$

Define a polynomial $\mathrm{W}: \Omega \rightarrow \Omega$ that implements a rotation:

$$
W\left(\omega^{-2}, \omega^{1}, \omega^{3}\right)=\left(\omega^{1}, \omega^{3}, \omega^{-2}\right), \quad W\left(\omega^{-1}, \omega^{0}\right)=\left(\omega^{0}, \omega^{-1}\right), \ldots
$$

Lemma: $\forall y \in \Omega: \mathrm{T}(y)=\mathrm{T}(\mathrm{W}(y)) \Rightarrow$ wire constraints are satisfied

Proving (3): the wiring is correct

Step 4: encode the wires of C :

$$
\left[\begin{array}{l}
\mathrm{T}\left(\omega^{-2}\right)=\mathrm{T}\left(\omega^{1}\right)=\mathrm{T}\left(\omega^{3}\right) \\
\mathrm{T}\left(\omega^{-1}\right)=\mathrm{T}\left(\omega^{0}\right)
\end{array}\right.
$$

example: $x_{1}=5, x_{2}=6, w_{1}=1$

Proved using a prescribed permutation check 1, 7
Proved using a prescribed permutation check

$$
\text { 2: } \omega^{\circ}, \omega^{\prime}, \omega^{\circ}: \text { II, } 7,77
$$

Define a polynomis

$$
W\left(\omega^{-2}, \omega^{1}, o \quad \omega^{1}, \omega^{3}, \omega^{-2}\right), \quad W\left(\omega^{-1}, \omega^{0}\right)=\left(\omega^{0}, \omega^{-1}\right), \ldots
$$

Lemma: $\forall y \in \Omega: \mathrm{T}(y)=\mathrm{T}(\mathrm{W}(y)) \Rightarrow$ wire constraints are satisfied

The complete Plonk Poly-IOP

(and SNARK)
Setup $(C) \rightarrow p p:=(S, W)$ and $v p:=(\sqrt{S}$ and $W)$ (untrused)
Prover P(pp,x,w)
build $\mathrm{T}(X) \in \mathbb{F}_{p}^{(\leq d)}[\mathrm{X}] \longrightarrow$ build $v(X) \in \mathbb{F}_{p}^{\left(\leq\left|I_{x}\right|\right)}[\mathrm{X}]$
Prover proves:
gates:
(1) $\mathrm{S}(\mathrm{y}) \cdot[\mathrm{T}(\mathrm{y})+\mathrm{T}(\omega \mathrm{y})]+(1-\mathrm{S}(\mathrm{y})) \cdot \mathrm{T}(\mathrm{y}) \cdot \mathrm{T}(\omega \mathrm{y})-\mathrm{T}\left(\omega^{2} \mathrm{y}\right)=0 \quad \forall \mathrm{y} \in \Omega_{\text {gates }}$
inputs:
(2) $\mathrm{T}(\mathrm{y})-v(\mathrm{y})=0$

Verifier V(vp, $\boldsymbol{x})$
wires:
(3) $\mathrm{T}(\mathrm{y})-\mathrm{T}(W(\mathrm{y}))=0$
(using prescribed perm. check) $\quad \forall \mathrm{y} \in \Omega$
output:
(4) $T\left(\omega^{3|C|-1}\right)=0$ (output of last gate $=0$)

The complete Plonk Poly-IOP (and SNARK)

$\operatorname{Setup}(C) \rightarrow p p:=(S, W)$ and $v p:=(\triangle$ and $)$
Prover $\mathrm{P}(p p, \boldsymbol{x}, \mathbf{w})$
Verifier $V(v p, \boldsymbol{x})$
build $\mathrm{T}(X) \in \mathbb{F}_{p}^{(\leq d)}[\mathrm{X}] \longrightarrow$ build $v(X) \in \mathbb{F}_{p}^{\left(\leq\left|I_{x}\right|\right)}[\mathrm{X}]$

Thm: The Plonk Poly-IOP is complete and knowledge sound, assuming $7|C| / p$ is negligible
(eprint/2019/953)

Many extensions ...

- Plonk proof: a short proof (O(1) commitments), fast verifier
- The SNARK can easily be made into a zk-SNARK

Main challenge: reduce prover time

- Hyperplonk: replace Ω with $\{0,1\}^{t} \quad$ (where $t=\log _{2}|\Omega|$)
- The polynomial T is now a multilinear polynomial in t variables
- ZeroTest is replaced by a multilinear SumCheck (linear time)

A generalization: plonkish arithmetization

Plonk for circuits with gates other than + and \times on rows:

Plonkish computation trace: (also used in AIR)
An example custom gate:

$$
\forall y \in \Omega_{\text {gates }}: \quad v(y \omega)+w(y) \cdot t(y)-t(y \omega)=0
$$

All such gate checks are included in the gate check

Plookup: ensure some values are in a pre-defined list

u1	v1	w1	t1	r1	s1
u2	v2	w2	t2	r2	s2
u3	v3	w3	t3	r3	s3
u4	v4	w4	t4	r4	s4
u5	v5	w5	t5	r5	s5
u6	v6	w6	t6	r6	s6
u7	v7	w7	t7	r7	s7
u8	v8	w8	t8	r8	

END OF LECTURE

Next lecture:
More polynomial commitments

