Zero Knowledge Proofs

The Plonk SNARK

Instructors: **Dan Boneh**, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

Let's build an efficient SNARK

First, a review of polynomial commitments

Prover commits to a polynomial f(X) in $\mathbb{F}_p^{(\leq d)}[X]$

• *eval*: for public $u, v \in \mathbb{F}_p$, prover can convince the verifier that committed poly satisfies

$$f(u) = v$$
 and $\deg(f) \le d$.

verifier has (d, com_f, u, v)

• Eval proof size and verifier time should be $O_{\lambda}(\log d)$

Group
$$\mathbb{G} \coloneqq \{0, G, 2 \cdot G, 3 \cdot G, \dots, (p-1) \cdot G\}$$
 of order p .

- <u>setup</u> $(1^{\lambda}) \rightarrow gp$:
- Sample random $\tau \in \mathbb{F}_p$

•
$$gp = (H_0 = G, H_1 = \tau \cdot G, H_2 = \tau^2 \cdot G, \dots, H_d = \tau^d \cdot G) \in \mathbb{G}^{d+1}$$

• delete τ !! (trusted setup)

<u>commit(gp, f)</u> \rightarrow **com**_f where **com**_f \coloneqq $f(\tau) \cdot G \in \mathbb{G}$

•
$$f(X) = f_0 + f_1 X + \dots + f_d X^d \Rightarrow com_f = f_0 \cdot H_0 + \dots + f_d \cdot H_d$$

= $f_0 \cdot G + f_1 \tau \cdot G + f_2 \tau^2 \cdot G + \dots = f(\tau) \cdot G$

ZKP MOOC

$$\underbrace{commit(gp, f) \rightarrow com_{f}}_{f} \text{ where } com_{f} = f(\tau) \cdot G \in \mathbb{G}$$

$$\underbrace{eval:}_{Prover(gp, f, u, v)}_{Goal: \text{ prove } f(u) = v} \text{ Goal: prove } f(u) = v \xrightarrow{Verifier(gp, com_{f}, u, v)}_{f(u) = v}$$

$$f(u) = v \Leftrightarrow u \text{ is a root of } \hat{f} \coloneqq f - v \Leftrightarrow (X - u) \text{ divides } \hat{f}$$

$$\Leftrightarrow \text{ exists } q \in \mathbb{F}_{p} [X] \text{ s.t. } q(X) \cdot (X - u) = f(X) - v$$

$$compute q(X) \qquad \pi \coloneqq com_{q} \in \mathbb{G} \qquad \text{accept if} \\ (\text{proof size indep. of deg. d}) \qquad \text{accept if}$$

Generalizations:

- Can also use KZG to commit to k-variate polynomials [PST'13]
- Batch proofs:
 - suppose verifier has commitments com_{f1}, ... com_{fn}
 - prover wants to prove $f_i(u_{i,j}) = v_{i,j}$ for $i \in [n], j \in [m]$

 \Rightarrow batch proof π is only one group element !

Properties of KZG: linear time commitment

Two ways to represent a polynomial f(X) in $\mathbb{F}_p^{(\leq d)}[X]$:

• Coefficient representation: $f(X) = f_0 + f_1 X + \dots + f_d X^d$

 \Rightarrow computing $com_f = f_0 \cdot H_0 + \dots + f_d \cdot H_d$ takes linear time in d

■ Point-value representation: $(a_0, f(a_0)), ..., (a_d, f(a_d))$ computing com_f naively: construct coefficients $(f_0, f_1, ..., f_d)$ \Rightarrow time $O(d \log d)$ using Num. Th. Transform (NTT) **Point-value representation**: a better way to compute *com*_f

Lagrange interpolation:
$$f(\tau) = \sum_{i=0}^{d} \lambda_i(\tau) \cdot f(a_i) \quad \text{where} \\ \lambda_i(\tau) = \frac{\prod_{j=0, j \neq i}^{d} (\tau - a_j)}{\prod_{j=0, j \neq i}^{d} (a_i - a_j)} \in \mathbb{F}_p$$

Idea: transform gp into Lagrange form (a linear map)

$$\widehat{gp} = \left(\hat{H}_0 = \lambda_0(\tau) \cdot G, \quad \hat{H}_1 = \lambda_1(\tau) \cdot G, \quad \dots, \quad \hat{H}_d = \lambda_d(\tau) \cdot G \right) \in \mathbb{G}^{d+1}$$

• Now, $|\operatorname{com}_f = f(\tau) \cdot G = f(a_0) \cdot \widehat{H}_0 + \dots + f(a_d) \cdot \widehat{H}_d$

 \Rightarrow linear time in d. (better than $O(d \log d)$)

KZG fast multi-point proof generation

Prover has some f(X) in $\mathbb{F}_p^{(\leq d)}[X]$. Let $\Omega \subseteq \mathbb{F}_p$ and $|\Omega| = d$

Suppose prover needs evaluation proofs $\pi_a \in G$ for all $a \in \Omega$

- Naively, takes time $O(d^2)$: d proofs each takes time O(d)
- Feist-Khovratovich (FK) algorithm (2020):
 - if Ω is a multiplicative subgroup: time $O(d \log d)$
 - otherwise: time $O(d \log^2 d)$

(eprint/2020/1274)

Difficulties with KZG: trusted setup for *gp*, and *gp* size is linear in *d*.

PCS have many applications

Example: vector commitment (a drop-in replacement for Merkle trees)

<u>Bob</u> : vector $(u_1,, u_k) \in \mathbb{F}_p^{(\leq d)}$		<u>Alice</u>
interpolate poly f s.t.: $f(i) = u_i$ for $i = 1,, k$	$com_f \coloneqq commit(gp, f)$	
$\pi \coloneqq$ eval proof that $f(2) = a$, $f(4) = b$	prove $u_2 = a$, $u_4 = b$	
(KZG: π is a single group element)	$\pi \in \mathbb{G}$	accept or
shorter than a Merkle proof!		reject

Proving properties of committed polynomials

Proving properties of committed polynomials

Recall: polynomial equality testing

Suppose $p \approx 2^{256}$ and $d \leq 2^{40}$ so that d/p is negligible

Let
$$f, g \in \mathbb{F}_p^{(\leq d)}[X]$$
.
For $r \triangleleft^{\underline{s}} \mathbb{F}_p$, if $f(r) = g(r)$ then $f = g$ w.h.p
 $f(r) - g(r) = 0 \Rightarrow f - g = 0$ w.h.p

 \Rightarrow a simple **equality test** for two committed polynomials

ZKP MOOC

Review: the proof system as an IOP

Review: the compiled proof system

Review: the compiled proof system

ZKP MOOC

Polynomial equality testing with KZG

For KZG:
$$f = g \iff \operatorname{com}_f = \operatorname{com}_g$$

 \Rightarrow verifier can tell if f = g on its own

But prover is needed to test equality of computed polynomials • Example: verifier has f, g_1, g_2, g_3 where all four are in $\mathbb{F}_p^{(\leq d)}[X]$

to test if $f = g_1 g_2 g_3$: V queries all four poly. at $r \notin \mathbb{F}_p$ and tests equality

• Complete and sound assuming 3d/p is negligible $(\deg(g_1g_2g_3) \le 3d)$

Important proof gadgets for univariates

Let Ω be some subset of \mathbb{F}_p of size k.

Let $f \in \mathbb{F}_p^{(\leq d)}[X]$ $(d \geq k)$

Let us construct efficient Poly-IOPs for the following tasks:

- Task 1 (**ZeroTest**): prove that f is identically zero on Ω
- Task 2 (**SumCheck**): prove that $\sum_{a \in \Omega} f(a) = 0$
- Task 3 (**ProdCheck**): prove that $\prod_{a \in \Omega} f(a) = 1$

The vanishing polynomial

Let Ω be some subset of \mathbb{F}_p of size k.

<u>Def</u>: the vanishing polynomial of Ω is $Z_{\Omega}(X) \coloneqq \prod_{a \in \Omega} (X - a)$ $\deg(Z_{\Omega}) = k$

Let $\omega \in \mathbb{F}_p$ be a primitive k-th root of unity (so that $\omega^k = 1$).

• if $\Omega = \{1, \omega, \omega^2, ..., \omega^{k-1}\} \subseteq \mathbb{F}_p$ then $Z_{\Omega}(X) = X^k - 1$

 \Rightarrow for $r \in \mathbb{F}_p$, evaluating $Z_{\Omega}(r)$ takes $\leq 2 \log_2 k$ field operations

(1) ZeroTest on
$$\Omega$$
 $(\Omega = \{1, \omega, \omega^2, ..., \omega^{k-1}\})$
Prover P(f)
 $q(X) \leftarrow f(X)/Z_{\Omega}(X)$ $q \in \mathbb{F}_p^{(\leq d)}[X]$
 $q = \mathbb{F}_p^{(\leq d)}[X]$
 $q =$

<u>**Thm**</u>: this protocol is complete and sound, assuming d/p is negligible.

(1) ZeroTest on
$$\Omega$$
 ($\Omega = \{1, \omega, \omega^2, ..., \omega^{k-1}\}$)
Prover P(f)
 $q(X) \leftarrow f(X)/Z_{\Omega}(X)$ $q \in \mathbb{F}_p^{(\leq d)}[X]$
 $q \in \mathbb{F}_p^{(\leq d)}[X]$ $r \Leftrightarrow \mathbb{F}_p$ Verifier evaluates
 $q \text{uery } q(X) \text{ and } f(X) \text{ at } r$ $r \Leftrightarrow \mathbb{F}_p$ $Z_{\Omega}(r) \text{ by itself}$
 $q \text{learn } q(r), f(r)$
 $q \in \mathbb{F}_p^{(r)}[X]$ $r \oplus \mathbb{F}_p^{(r)}[X]$ $r \oplus \mathbb{F}_p^{(r)}[X]$

Verifier time: $O(\log k)$ and two poly queries (but can be done in one)

Prover time: dominated by the time to compute q(X) and then commit to q(X)

(3) Product check on Ω : $\prod_{a \in \Omega} f(a) = 1$

Set $t \in \mathbb{F}_p^{(\leq k)}[X]$ to be the degree-*k* polynomial:

$$t(1) = f(1),$$
 $t(\omega^{s}) = \prod_{i=0}^{s} f(\omega^{i})$ for $s = 1, ..., k - 1$

Then $t(\omega) = f(1) \cdot f(\omega)$, $t(\omega^2) = f(1) \cdot f(\omega) \cdot f(\omega^2)$, ... $t(\omega^{k-1}) = \prod_{a \in \Omega} f(a) = 1$

and

 $t(\omega \cdot \mathbf{x}) = t(x) \cdot f(\omega \cdot \mathbf{x})$ for all $x \in \Omega$ (including at $x = \omega^{k-1}$)

(3) Product check on Ω : $\prod_{a \in \Omega} f(a) = 1$

Set $t \in \mathbb{F}_p^{(\leq k)}[X]$ to be the degree-*k* polynomial:

$$t(1) = f(1), \quad t(\omega^{s}) = \prod_{i=0}^{s} f(\omega^{i}) \text{ for } s = 1, ..., k-1$$

Lemma: if (i)
$$t(\omega^{k-1}) = 1$$
 and
(ii) $t(\omega \cdot x) - t(x) \cdot f(\omega \cdot x) = 0$ for all $x \in \Omega$
then $\prod_{a \in \Omega} f(a) = 1$

ZKP MOOC

(3) Product check on Ω (unoptimized)

$$\begin{array}{c} \underline{\operatorname{Prover} P(f)} & \underline{\operatorname{Verifier} V(f)} \\ \text{construct } t(X) \in \mathbb{F}_p^{(\leq k)} \text{ and } t_1(X) = t(\omega \cdot X) - t(X) \cdot f(\omega \cdot X) \\ \text{set } q(X) = t_1(X)/(X^k - 1) \in \mathbb{F}_p^{(\leq d)} & t_1(X) \text{ should be zero on } \Omega \\ \hline t q & r \Leftrightarrow \mathbb{F}_p \\ \underline{query \ t(X) \ at \ \omega^{k-1}, \ r, \ \omega r} \\ \underline{query \ q(X) \ at \ r, \ and \ f(X) \ at \ \omega r} \\ proves that \ t_1(\Omega) = 0: & \operatorname{cept \ if } t(\omega^{k-1}) \stackrel{?}{=} 1 \text{ and} \\ t(\omega r) - t(r)f(\omega r) \stackrel{?}{=} q(r) \cdot (r^k - 1) \end{array}$$

ZKP MOOC

(3) Product check on Ω (unoptimized)

$$\begin{array}{c} \underline{\operatorname{Prover} P(f)} & \underline{\operatorname{Verifier V(f)}} \\ \text{construct } t(X) \in \mathbb{F}_p^{(\leq k)} \text{ and } t_1(X) = t(\omega \cdot X) - t(X) \cdot f(\omega \cdot X) \\ \text{set } q(X) = t_1(X)/(X^k - 1) \in \mathbb{F}_p^{(\leq d)} & \text{A public coin } \\ \hline t \quad q & r \triangleleft^{\leq} \mathbb{F}_p \\ \hline q & r \triangleleft^{\leq} \mathbb{F}_p \\ \hline q & query \ t(X) \ \text{at } \omega^{k-1}, \ r, \ \omega r \\ query \ q(X) \ \text{at } r \ \text{, and } f(X) \ \text{at } \omega r \end{array} \\ \begin{array}{c} \mathrm{learn} \ t(\omega^{k-1}), \ t(r), \ t(\omega r), \ q(r), \ f(\omega r) \\ \end{array}$$

Proof size: two commits, five evals. Verifier time: $O(\log k)$. Prover time: $O(k \log k)$.

Same works for rational functions: $\prod_{a \in \Omega} (f/g)(a) = 1$

<u>Prover P(f, g)</u>

$$\frac{\text{Verifier V}(f,g)}{}$$

Set $t \in \mathbb{F}_p^{(\leq k)}[X]$ to be the degree-*k* polynomial:

t(1) = f(1)/g(1), $t(\omega^{s}) = \prod_{i=0}^{s} f(\omega^{i})/g(\omega^{i})$ for s = 1, ..., k-1

Lemma: if (i)
$$t(\omega^{k-1}) = 1$$
 and
(ii) $t(\omega \cdot x) \cdot g(\omega \cdot x) = t(x) \cdot f(\omega \cdot x)$ for all $x \in \Omega$
then $\prod_{a \in \Omega} f(a)/g(a) = 1$

(4) Another useful gadget: permutation check

Let
$$f, g$$
 be polynomials in $\mathbb{F}_p^{(\leq d)}[X]$. Verifier has f , g .

Goal: prover wants to prove that
$$(f(1), f(\omega), f(\omega^2), \dots, f(\omega^{k-1})) \in \mathbb{F}_p^k$$

is a permutation of $(g(1), g(\omega), g(\omega^2), \dots, g(\omega^{k-1})) \in \mathbb{F}_p^k$

 \Rightarrow Proves that $g(\Omega)$ is the same as $f(\Omega)$, just permuted

(4) Another useful gadget: permutation check

$$\underbrace{Prover P(f,g)}_{\text{Let } \hat{f}(X) = \prod_{a \in \Omega} (X - f(a)) \text{ and } \hat{g}(X) = \prod_{a \in \Omega} (X - g(a))}_{\text{Then: } \hat{f}(X) = \hat{g}(X) \iff g \text{ is a permutation of } f \xrightarrow{\text{A public coin protocol}}_{r \notin \mathbb{F}_p}$$

$$\underbrace{r \notin f(x) = \hat{g}(x)}_{\text{[two commits, six evals]}} = \lim_{a \in \Omega} \left(\frac{r - f(a)}{r - g(a)}\right) = 1 \text{ implies } \hat{f}(X) = \hat{g}(X) \text{ w.h.p accept or reject}}$$

(5) final gadget: prescribed permutation check

 $W: \Omega \to \Omega$ is a **permutation of** Ω if $\forall i \in [k]: W(\omega^i) = \omega^j$ is a bijection example $(k = 3): W(\omega^0) = \omega^2$, $W(\omega^1) = \omega^0$, $W(\omega^2) = \omega^1$

Let f, g be polynomials in $\mathbb{F}_p^{(\leq d)}[X]$. Verifier has f, g, W.

<u>Goal</u>: prover wants to prove that f(y) = g(W(y)) for all $y \in \Omega$

 \Rightarrow Proves that $g(\Omega)$ is the same as $f(\Omega)$, permuted by the prescribed W

Prescribed permutation check

How? Use a zero-test to prove
$$f(y) - g(W(y)) = 0$$
 on Ω

<u>The problem</u>: the polynomial f(y) - g(W(y)) has degree k^2

- \Rightarrow prover would need to manipulate polynomials of degree k²
- ⇒ quadratic time prover !! (goal: linear time prover)

Let's reduce this to a prod-check on a polynomial of degree 2k (not k^2)

Prescribed permutation check

Observation:

if
$$(W(a), f(a))_{a \in \Omega}$$
 is a permutation of $(a, g(a))_{a \in \Omega}$
then $f(y) = g(W(y))$ for all $y \in \Omega$

Proof by example: $W(\omega^0) = \omega^2$, $W(\omega^1) = \omega^0$, $W(\omega^2) = \omega^1$

Right tuple:
$$(\omega^0, g(\omega^0)), (\omega^1, g(\omega^1)), (\omega^2, g(\omega^2))$$
Left tuple: $(\omega^2, f(\omega^0)), (\omega^0, f(\omega^1)), (\omega^1, f(\omega^2))$

Prescribed permutation check

Prover P(f, g, W)

 $\frac{\text{Verifier V}(f, g, W)}{}$

Let
$$\int \hat{f}(X,Y) = \prod_{a \in \Omega} (X - Y \cdot W(a) - f(a)) \text{ and}$$
$$\hat{g}(X,Y) = \prod_{a \in \Omega} (X - Y \cdot a - g(a))$$

(bivariate polynomials of total degree k)

Lemma: $\hat{f}(X,Y) = \hat{g}(X,Y) \iff (W(a),f(a))_{a\in\Omega}$ is a perm. of $(a,g(a))_{a\in\Omega}$ To prove, use the fact that $\mathbb{F}_p[X,Y]$ is a unique factorization domain

The complete protocol

Summary of proof gadgets

polynomial equality testing

zero test on $\boldsymbol{\Omega}$

product check, sum check

permutation check

prescribed permutation check

The PLONK IOP for general circuits

eprint/2019/953

PLONK: widely used in practice

PLONK: a poly-IOP for a general circuit C(x, w)

Step 1: compile circuit to a computation trace (gate fan-in = 2)

Encoding the trace as a polynomial

 $|C| \coloneqq$ total # of gates in C , $|I| \coloneqq |I_{\chi}| + |I_{w}| =$ # inputs to C

Let's see how ...

let $d \coloneqq 3 |C| + |I|$ (in example, d = 12) and $\Omega \coloneqq \{1, \omega, \omega^2, ..., \omega^{d-1}\}$

The plan:

prover interpolates a polynomial
$$T \in \mathbb{F}_p^{(\leq d)}[X]$$

that encodes the entire trace.

inputs:	5, 6,	1	
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Encoding the trace as a polynomial

The plan: Prover interpolates $T \in \mathbb{F}_p^{(\leq d)}[X]$ such that

- (1) **T** encodes all inputs: $T(\omega^{-j}) = \text{input } \#j$ for j = 1, ..., |I|
- (2) *T* encodes all wires: $\forall l = 0, ..., |C| 1$:
 - T(ω^{3l}): left input to gate #l
 - T(ω^{3l+1}): right input to gate #l
 - $T(\omega^{3l+2})$: output of gate #*l*

Gate 0: 5, 6, 12	L
Gate 1: 6, 1, 7	
Gate 2: 11, 7, 7	7

Encoding the trace as a polynomial

In our example, Prover interpolates T(X) such that:

inputs:	$T(\omega^{-1})=5,$	$T(\omega^{-2})=6,$	$T(\omega^{-3})=1,$
gate 0:	$T(\omega^0)=5,$	$T(\omega^1)=6,$	$T(\omega^2)=11,$
gate 1:	$T(\omega^3)=6,$	$T(\omega^4)=1,$	$T(\omega^5)=7,$
gate 2:	$T(\omega^{6}) = 11,$	$T(\omega^7)=7,$	$T(\omega^8) = 77$

degree(T) = 11

Prover can use FFT to compute the coefficients of T in time $O(d \log d)$

inputs:	5, 6	5, 1	
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Step 2: proving validity of T

Prover needs to prove that T is a correct computation trace:

- (1) T encodes the correct inputs,
- (2) every gate is evaluated correctly,
- (3) the wiring is implemented correctly,
- (4) the output of last gate is 0

Proving (4) is easy: prove $T(\omega^{3|C|-1}) = 0$

(wiring constraints)

Proving (1): T encodes the correct inputs

Both <u>prover</u> and <u>verifier</u> interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the *x*-inputs to the circuit:

for $j = 1, ..., |I_{\chi}|$: $v(\omega^{-j}) = \text{input } \#j$

In our example:
$$v(\omega^{-1}) = 5$$
, $v(\omega^{-2}) = 6$. (*v* is linear)

constructing v(X) takes time proportional to the size of input x

 \Rightarrow verifier has time do this

Proving (1): T encodes the correct inputs

Both <u>prover</u> and <u>verifier</u> interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the *x*-inputs to the circuit:

for $j = 1, ..., |I_x|$: $v(\omega^{-j}) =$ input #j

Let
$$\Omega_{inp} \coloneqq \{ \omega^{-1}, \omega^{-2}, \dots, \omega^{-|I_{\chi}|} \} \subseteq \Omega$$
 (points encoding the input)

Prover proves (1) by using a ZeroTest on Ω_{inp} to prove that

$$\mathsf{T}(\mathsf{y}) - \boldsymbol{\nu}(\mathsf{y}) = 0 \qquad \forall \; \mathsf{y} \in \Omega_{\mathsf{inp}}$$

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a <u>selector</u> polynomial S(X)

define $S(X) \in \mathbb{F}_p^{(\leq d)}[X]$ such that $\forall l = 0, ..., |C| - 1$: $S(\omega^{3l}) = 1$ if gate #l is an addition gate $S(\omega^{3l}) = 0$ if gate #l is a multiplication gate

inputs:	5,	6,	1	S(X)	
Gate 0 (ω^0):	5,	6,	11	1	(+)
Gate 1 (ω^3):	6,	1,	7	1	(+)
Gate 2 (ω^6):	11,	7,	77	0	(×)

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a <u>selector</u> polynomial S(X)

define $S(X) \in \mathbb{F}_p^{(\leq d)}[X]$ such that $\forall l = 0, ..., |C| - 1$: $S(\omega^{3l}) = 1$ if gate #l is an addition gate $S(\omega^{3l}) = 0$ if gate #l is a multiplication gate

Proving (2): every gate is evaluated correctly

Setup(C)
$$\rightarrow pp \coloneqq S$$
 and $vp \coloneqq (S)$

 $\frac{\text{Prover P}(pp, \mathbf{x}, \mathbf{w})}{\text{build } T(X) \in \mathbb{F}_p^{(\leq d)}[X]} \xrightarrow{T} \frac{\text{Verifier V}(vp, \mathbf{x})}{T}$

Prover uses ZeroTest to prove that for all $\forall y \in \Omega_{gates}$:

$$S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) - T(\omega^2 y) = 0$$

Proving (3): the wiring is correct

Step 4: encode the wires of C:

$$\begin{bmatrix}
T(\omega^{-2}) = T(\omega^{1}) = T(\omega^{3}) \\
T(\omega^{-1}) = T(\omega^{0}) \\
T(\omega^{2}) = T(\omega^{6}) \\
T(\omega^{-3}) = T(\omega^{4})
\end{bmatrix}$$

example:
$$x_1=5, x_2=6, w_1=1$$

 $\omega^{-1}, \omega^{-2}, \omega^{-3}$: **5**, **6**, **1**
0: $\omega^0, \omega^1, \omega^2$: **5**, **6**, **11**
1: $\omega^3, \omega^4, \omega^5$: **6**, **1**, **7**
2: $\omega^6, \omega^7, \omega^8$: **11**, **7**, **77**

Define a polynomial $W: \Omega \to \Omega$ that implements a rotation: $W(\omega^{-2}, \omega^1, \omega^3) = (\omega^1, \omega^3, \omega^{-2}), \quad W(\omega^{-1}, \omega^0) = (\omega^0, \omega^{-1}), \dots$

Lemma: $\forall y \in \Omega$: $T(y) = T(W(y)) \Rightarrow$ wire constraints are satisfied

Proving (3): the wiring is correct

The complete Plonk Poly-IOP (and SNARK)

Setup(
$$C$$
) $\rightarrow pp := (S,W)$ and $vp := (S and W)$ (untrusted)

$$\begin{array}{cccc}
\underline{Prover P(pp, x, w)} & & & & & & & \\
\underline{Prover P(pp, x, w)} & & & & & & \\
build T(X) \in \mathbb{F}_p^{(\leq d)}[X] & & & & & \\
Prover proves: & & & & \\
gates: & (1) S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) - T(\omega^2 y) = 0 & & \forall y \in \Omega_{gates} \\
inputs: & (2) T(y) - v(y) = 0 & & & & \forall y \in \Omega_{inp} \\
wires: & (3) T(y) - T(W(y)) = 0 & (using prescribed perm. check) & & \forall y \in \Omega \\
output: & (4) T(\omega^{3|C|-1}) = 0 & (output of last gate = 0)
\end{array}$$

The complete Plonk Poly-IOP (and SNARK)

<u>Thm</u>: The Plonk Poly-IOP is complete and knowledge sound, assuming 7|C|/p is negligible

(eprint/2019/953)

Many extensions ...

- Plonk proof: a short proof (O(1) commitments), fast verifier
- The SNARK can easily be made into a zk-SNARK
- Main challenge: reduce prover time
- Hyperplonk: replace Ω with $\{0,1\}^t$ (where $t = \log_2 |\Omega|$)
 - The polynomial T is now a multilinear polynomial in t variables
 - ZeroTest is replaced by a multilinear SumCheck (linear time)

A generalization: plonkish arithmetization

Plonk for circuits with gates other than + and × on rows:

Plonkish computation trace: (also used in AIR)

An example custom gate:

$$\forall y \in \Omega_{gates}: v(y\omega) + w(y) \cdot t(y) - t(y\omega) = 0$$

All such gate checks are included in the gate check

Plookup: ensure some values are in a pre-defined list

u1	v1	w1	t1	r1	s1
u2	v2	w2	t2	r2	s2
u3	v3	w3	t3	r3	s3
u4	v4	w4	t4	r4	s4
u5	v5	w5	t5	r5	s5
u6	v6	w6	t6	r6	s6
u7	v7	w7	t7	r7	s7
u8	v8	w8	t8	r8(s8
output					

END OF LECTURE

Next lecture: More polynomial commitments

