
ZeroKnowledge Proofs

The Plonk SNARK
Instructors: Dan Boneh, ShafiGoldwasser, Dawn Song, Justin Thaler, YupengZhang

ZKP MOOC

[ŜǘΩǎ ōǳƛƭŘ ŀƴ ŜŦŦƛŎƛŜƴǘ {b!wY

A polynomial
interactive

oracle proof (IOP)

A polynomial
commitment

scheme

SNARK for
general circuits

ZKP MOOC

First, a review of polynomial commitments

Prover commits to a polynomial Ὢὢ in ὢ

Áeval: for public όȟὺɴ , prover can convince the verifier that

committed poly satisfies

Ὢό ὺ and degὪ Ὠ.

ÁEval proof size and verifier time should be ὕ ÌÏÇ▀

verifier has Ὠȟcomf , όȟὺ

ZKP MOOC

The KZG poly-commit scheme (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ

Group ḧ {πȟὋȟςẗὋȟσẗὋȟȣȟὴ ρẗὋ} of order ὴ.

setup(ρ) ʝ gp:
ÁSample random †ɴ

Ágp =

Ádelete †!! (trusted setup)

commit(gp, Ὢ) ʝ comf where comf ḧ Ὢ†ẗ' ᶰ

ÁὪὢ Ὢ Ὢὢ Ễ Ὢὢ ᵼ comf ὪẗὌ Ễ ὪẗὌ

ZKP MOOC

The KZG poly-commit scheme (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ

Group ḧ {πȟὋȟςẗὋȟσẗὋȟȣȟὴ ρẗὋ} of order ὴ.

setup(ρ) ʝ gp:
ÁSample random †ɴ

Ágp =

Ádelete †!! (trusted setup)

commit(gp, Ὢ) ʝ comf where comf ḧ Ὢ†ẗ' ᶰ

ÁὪὢ Ὢ Ὢὢ Ễ Ὢὢ ᵼ comf ὪẗὌ Ễ ὪẗὌ

a binding commitment,
but not hiding

ZKP MOOC

commit(gp, Ὢ) ʝ comf where comf Ὢ†ẗὋ ᶰ

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal: prove Ὢό ὺ

Ὢό ὺ ᵾ όis a root of ὪḧŦҍὺ ᵾ (X-ό) divides Ὢ

ᵾ exists qᶰ ὢ s.t. q(X)ẗ(X-ό) = f(X)ҍὺ

compute q(X)
and comq= q(†ẗ'

“ḧ comqᶰ accept if
(†ҍό)ẗcomq =comfҍὺẗG(proof size indep. of deg. d)

The KZG poly-commit scheme (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ

ZKP MOOC

commit(gp, Ὢ) ʝ comf where comf Ὢ†ẗὋ ᶰ

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal: prove Ὢό ὺ

Ὢό ὺ ᵾ όis a root of ὪḧŦҍὺ ᵾ (X-ό) divides Ὢ

ᵾ exists qᶰ ὢ s.t. q(X)ẗ(X-ό) = f(X)ҍὺ

compute q(X)
and comq= q(†ẗ'

“ḧ comqᶰ accept if
(†ҍό)ẗcomq =comfҍὺẗG(proof size indep. of deg. d)

The KZG poly-commit scheme (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ

(† ό) q(†)ẗ'Ḳ(f (†) Ö)ẗ'

ZKP MOOC

commit(gp, Ὢ) ʝ comf where comf Æ†ẗ' ᶰ

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal: prove Ὢό ὺ

Ὢό ὺ ᵾ όis a root of ὪḧŦҍὺ ᵾ (X-ό) divides Ὢ

ᵾ exists qᶰ ὢ s.t. q(X)ẗ(X-ό) = f(X)ҍὺ

“ḧ comqᶰ accept if
(†ҍό)ẗcomq =comfҍὺẗG

The KZG poly-commit scheme (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ

An expensive computation
for large Ὠ Verifier does not know †ᵼ ǳǎŜǎ ŀ άǇŀƛǊƛƴƎέ

(and only needs ὌȟὌ from gp)

Iƻǿ ǘƻ ǇǊƻǾŜ ǘƘŀǘ ǘƘƛǎ ƛǎ ŀ ǎŜŎǳǊŜ t/{Κ bƻǘ ǘƻŘŀȅ Χ

(proof size indep. of deg. d)

compute q(X)
and comq= q(†ẗ'

ZKP MOOC

Generalizations:

ÁCan also use KZG to commit to k-variate polynomials [PST’13]

ÁBatch proofs:
Ásuppose verifier has commitments comf1Σ Χ comfn

Áprover wants to prove Ὢόȟ ὺȟ for Ὥɴ ὲȟὮɴ ά

ᵼ batch proof “is only one group element !

The KZG poly-commit scheme (Kate-Zaverucha-DƻƭŘōŜǊƎΩнлмлύ

ZKP MOOC

Properties of KZG: linear time commitment

Two ways to represent a polynomial Ὢὢ in ὢ :

ÁCoefficient representation: Ὢὢ Ὢ Ὢὢ Ễ Ὢὢ

ᵼ computing comf ὪẗὌ Ễ ὪẗὌ takes linear time in Ὠ

ÁPoint-value representation: ὥȟὪὥ ȟȣȟὥȟὪὥ

computing comf naively: construct coefficients ὪȟὪȟȣȟὪ

ᵼ time ὕὨÌÏÇὨ using Num. Th. Transform (NTT)

ZKP MOOC

Properties of KZG: linear time commitment

Point-value representation: a better way to compute comf

Lagrange interpolation: Ὢ† В ‗†ɇὪὥ

ÁIdea: transform Ὣὴinto Lagrange form (a linear map)

Ὣὴ

ÁNow, comf Ὢ†ẗ' Ὢὥ ẗὌ Ễ Ὢὥ ẗὌ

ᵼ linear time in Ὠ. (better than /ὨÌÏÇὨ)

where

ZKP MOOC

KZG fast multi-point proof generation

Prover has some Ὢὢ in ὢ . Let ɱṖ and ȿɱȿ Ὠ

Suppose prover needs evaluation proofs “ ᶰὋ for all ὥᶰɱ

ÁNaively, takes time ὕὨ : Ὠproofs each takes time ὕὨ

ÁFeist-Khovratovich(FK) algorithm (2020):

Áif ɱis a multiplicative subgroup: time ὕὨÌÏÇὨ

Áotherwise: time ὕὨÌÏÇὨ

https://alinush.github.io/2021/06/17/Feist-Khovratovich-technique-for-computing-KZG-proofs-fast.html
https://alinush.github.io/2021/06/17/Feist-Khovratovich-technique-for-computing-KZG-proofs-fast.html

ZKP MOOC

The Dory polynomial commitment (eprint/2020/1274)

Dory:

Átransparent setup: no secret randomness in setup

Ácomf is a single group element (independent of degree Ὠ)

Áeval proof size for Ὢᶰ ὢ is O(log Ὠ) group elements

Áeval verify time is O(log Ὠ) Prover time: ὕὨ

Difficulties with KZG: trusted setup for gp, and gp size is linear in d.

ZKP MOOC

PCS have many applications

Example: vector commitment(a drop-in replacement for Merkle trees)

Bob: vector όȟȣȟό ᶰ Alice

interpolate poly █s.t.:
█Ὥ ό for Ὥ ρȟȣȟὯ

com█ḧ commit(gp, █)

prove ό ὥȟό ὦ“ḧeval proof that █ς ὥ, █τ ὦ

“ᶰ accept or
reject

(KZG: “is a single group element)

shorter than a Merkle proof!

Credit: Faithie/Shutterstock

ZKP MOOC

Proving properties of
committed polynomials

ZKP MOOC

Proving properties of committed polynomials

Prover P(ὪȟὫ) Verifier V(ὪȟὫ)

Goal: convince verifier that ὪȟὫᶰ ὢ satisfy some properties

Proof systems presented as an IOP:
ὶ ὶᵻ

$

ή

query ὪὢȟὫὢȟήὢ at some points in

[V sends ὼto P who responds with Ὢὼ and eval proof “] accept or reject

ZKP MOOC

Recall: polynomial equality testing

Suppose ὴҒ н256 and ὨҖ н40 so that ὨȾὴ is negligible

Let ὪȟὫᶰ ὢ.

For ὶᵻ , if Ὢὶ Ὣὶ then Ὢ Ὣ w.h.p

ᵼ a simple equality test for two committed polynomials

Ὢὶ Ὣὶ π ᵼ Ὢ Ὣ π w.h.p

$

ZKP MOOC

Review: the proof system as an IOP

Prover Verifier

█ȟ▌

query Ὢ8 and Ὣὢ at ὶ

accept if:
Ὢὶ Çὶ

ὶᵻ
$

Ὢ Ὣ

learn ὪὶȟÇὶ

ZKP MOOC

Review: the compiled proof system

Prover Verifier

█ȟ▌

ὶ

accept if:
(i) ώ ώȭ, ÁÎÄ
(ii) “Ὢ, “Ὣare

valid

ὶᵻ
$

Ὢ Ὣ

ώ, “Ὢ ώᴂ, “Ὣ

ώᵻ Ὢὶ

ώᶧὫὶ

proof that
ώ Ὢὶ

proof that
ώᴂ Ὣὶ

ZKP MOOC

Review: the compiled proof system

Prover Verifier

█ȟ▌

ὶ

accept if:
(i) ώ ώȭ, ÁÎÄ
(ii) “Ὢ, “Ὣare

valid

ὶᵻ
$

Ὢ Ὣ

ώ, “Ὢ ώᴂ, “Ὣ

ώᵻ Ὢὶ

ώᶧὫὶ

A public coin
protocol

Make
non-interactive

using Fiat-Shamir

proof that
ώ Ὢὶ

proof that
ώᴂ Ὣὶ

ZKP MOOC

Polynomial equality testing with KZG

For KZG: Ὢ Ὣ ÃÏÍὪ ÃÏÍὫ

ᵼ verifier can tell if Ὢ Ὣon its own

But prover is needed to test equality of computed polynomials

ÁExample: verifier has ὪȟὫȟὫȟὫ where all four are in ὢ

to test if Ὢ ὫὫὫ: V queries all four poly. at ὶᵻ and tests equality

ÁComplete and sound assuming σὨȾὴis negligible (ÄÅÇὫὫὫ σὨ)

$

ZKP MOOC

Important proof gadgets for univariates

Let ɱbe some subset of of size Ὧ.

Let Ὢɴ ὢ Ὠ Ὧ Verifier has Ὢ

Let us construct efficient Poly-IOPs for the following tasks:

Task 1 (ZeroTest): prove that Ὢis identically zero on ɱ

Task 2 (SumCheck): prove that Вᶰ Ὢὥ π

Task 3 (ProdCheck): prove that Б ᶰ Ὢὥ ρ

ZKP MOOC

The vanishing polynomial

Let ɱbe some subset of of size Ὧ.

Def: the vanishing polynomial of ɱis ὤ ὢ ḧБ ᶰ ὢ ὥ

deg(ὤ Ὧ

Let ‫ᶰ be a primitive Ὧ-th root of unity (so that ‫ = 1).

Áif ɱ { 1, ‫Ὧ-1 } Ṗ ‫2Σ ΧΣ ,‫ then ὤ ὢ ὢ ρ

ᵼ for ὶɴ , evaluating ὤ ὶ ǘŀƪŜǎ ҖςÌÏÇὯ field operations

ZKP MOOC

(1) ZeroTeston ɱ (ɱ= { 1, ({ ‫Ὧ-1 ‫2Σ ΧΣ ,‫

Prover P(Ὢ) Verifier V(Ὢ)

ήὢ ᶧὪὢȾὤ ὢ ήᶰ ὢ

query ήὢ and Ὢὢ at ὶ
learn ήὶȟὪὶ

accept if ὪὶḲήὶẗὤ ὶ

Thm: this protocol is complete and sound, assuming ὨȾὴis negligible.

Lemma: Ὢis zero on ɱif and only if
Ὢὢ is divisible by ὤ ὢ (implies that Ὢὢ ήὢ ɇὤ ὢ w.h.p)

verifier evaluates
ὤ ὶby itself ὶᵻ

$

ZKP MOOC

(1) ZeroTeston ɱ (ɱ= { 1, ({ ‫Ὧ-1 ‫2Σ ΧΣ ,‫

Prover P(Ὢ) Verifier V(Ὢ)

ήὢ ᶧὪὢȾὤ ὢ ήᶰ ὢ
ὶᵻ

query ήὢ and Ὢὢ at ὶ
learn ήὶȟὪὶ

accept if ὪὶḲήὶẗὤ ὶ

Verifier time: O(log Ὧ) and two poly queries (but can be done in one)

Prover time: dominated by the time to compute ήὢ and then commit to ήὢ

verifier evaluates
ὤ ὶby itself $

ZKP MOOC

(3) Product check on ɱ: Б ᶰ Ὢὥ ρ

Set ὸɴ ὢ to be the degree-Ὧpolynomial:

ὸρ Ὢρȟ ὸ‫Ó Б Ὢ‫É for ί ρȟȣȟὯ ρ

Then t(‫ Ὢ1 ɇὪ‫ , t(‫ Ὢ1 ɇὪ‫ ɇὪ‫ Σ Χ

t(‫) Б ᶰ Ὢὥ ρ

and ὸ‫ẗØ ὸὼẗὪ‫ẗØ for all ὼɴ ɱ (including at ὼ ‫)

ZKP MOOC

(3) Product check on ɱ: Б ᶰ Ὢὥ ρ

Set ὸɴ ὢ to be the degree-Ὧpolynomial:

ὸρ Ὢρȟ ὸ‫Ó Б Ὢ‫É for ί ρȟȣȟὯ ρ

Lemma: if (i) ὸ(‫) ρ and

(ii) ὸ‫ẗØ ὸὼẗὪ‫ẗØ π for all ὼɴ ɱ

then Б ᶰ Ὢὥ ρ

ZKP MOOC

(3) Product check on ɱ (unoptimized)

Prover P(Ὢ) Verifier V(Ὢ)

construct ὸὢᶰ and ὸρὢ ὸ‫ẗὢ ὸὢẗὪ‫ẗὢ

set q ὢ ὸρὢȾὢ ρ ᶰ

query ὸὢ at ‫ ȟὶȟ‫ὶ
learn ὸ‫), t(r), ὸ‫ὶ, ήὶ, Ὢ‫ὶ

queryήὢ at ὶ, and Ὢὢ at ‫ὶ
accept if ὸ‫) Ḳ1 and

ὸ‫ὶ ὸὶὪ‫ὶ Ḳήὶẗὶ ρproves that ὸρɱ π:

ὸ ή
ὶᵻ $

ὸὢ should be zero on ɱ

ZKP MOOC

(3) Product check on ɱ (unoptimized)

Prover P(Ὢ) Verifier V(Ὢ)

construct ὸὢᶰ and ὸρὢ ὸ‫ẗὢ ὸὢẗὪ‫ẗὢ

set q ὢ ὸρὢȾὢ ρ ᶰ

query ὸὢ at ‫ ȟὶȟ‫ὶ
learn ὸ‫), t(r), ὸ‫ὶ, ήὶ, Ὢ‫ὶ

queryήὢ at ὶ, and Ὢὢ at ‫ὶ

ὶᵻ

ὸ ή

A public coin
protocol

Proof size: two commits, five evals. Verifier time: ὕÌÏÇὯ. Prover time: ὕὯÌÏÇὯ.

$

ZKP MOOC

Same works for rational functions: Б ᶰ ὪȾὫ ὥ ρ

Prover P(ὪȟὫ) Verifier V(ὪȟὫ)

Set ὸɴ ὢ to be the degree-Ὧpolynomial:

ὸρ ὪρȾὫρȟ ὸ‫Ó Б Ὢ‫ÉȾὫ‫É) for ί ρȟȣȟὯ ρ

Lemma: if (i) ὸ(‫) ρ and

(ii) ὸ‫ẗØẗὫ‫ẗØ ὸὼẗὪ‫ẗØ for all ὼɴ ɱ

then Б ᶰ ὪὥȾὫὥ ρ

ZKP MOOC

(4) Another useful gadget: permutation check

Let ὪȟὫbe polynomials in ὢȢ Verifier has Ὢ , Ὣ .

Goal: prover wants to prove that(ὪρȟὪ‫ȟὪ‫ ȟȣȟὪ‫)) ɴ

is a permutation of (ὫρȟὫ‫ȟὫ‫ ȟȣȟὫ‫)) ᶰ

ᵼ Proves that Ὣɱ is the same as Ὢɱ , just permuted

ZKP MOOC

Let Ὢὢ Б ᶰ ὢ Ὢὥ and Ὣὢ Б ᶰ ὢ Ὣὥ

A public coin
protocol

Prover P(ὪȟὫ) Verifier V(ὪȟὫ)

Then: Ὢὢ Ὣὢ Ὣis a permutation of Ὢ

ὶ

prove that Ὢὶ Ὣὶ
prod-check:

accept or reject
ώ[ƛǇǘƻƴΩǎ ǘǊƛŎƪΣ мфуфϐ

implies Ὢὢ Ὣὢ w.h.p

(4) Another useful gadget: permutation check

ὶᵻ $

[two commits, six evals]

ZKP MOOC

(5) final gadget: prescribed permutation check

ὡȡɱᶨɱis a permutation of ɱif ᶅ Ὥɴ Ὧȡὡ ‫ ‫ is a bijection

example Ὧ σ: ὡ ‫ ‫ ȟὡ ‫ ‫ ȟ ὡ ‫ ‫

Let ὪȟὫbe polynomials in ὢ . Verifier has Ὢ , Ὣ , ὡ .

Goal: prover wants to prove that Ὢώ Ὣὡ ώ for all ώᶰɱ

ᵼ Proves that Ὣɱ is the same as Ὢɱ , permuted by the prescribed ὡ

ZKP MOOC

Prescribed permutation check

How? Use a zero-test to prove Ὢώ Ὣὡ ώ π on ɱ

The problem: the polynomial Ὢώ Ὣὡ ώ has degree k2

ᵼ prover would need to manipulate polynomials of degree k2

ᵼ quadratic time prover !! (goal: linear time prover)

[ŜǘΩǎ ǊŜŘǳŎŜ ǘƘƛǎ ǘƻ ŀ ǇǊƻŘ-check on a polynomial of degree ςὯ (not Ὧ)

ZKP MOOC

Prescribed permutation check

Observation:

if ὡ ὥȟὪὥ
ᶰ

is a permutation of ὥȟὫὥ
ᶰ

then Ὢώ Ὣὡ ώ for all ώᶰɱ

Proof by example: ὡ ‫ ‫ ȟὡ ‫ ‫ ȟ ὡ ‫ ‫

Right tuple: (0̟,g(̟ 0)), (1̟,g(̟ 1)), (2̟,g(̟ 2))

Left tuple: (2̟ ,f(0̟)), (0̟ ,f(1̟)), (1̟,f(2̟))

ZKP MOOC

Prescribed permutation check

Prover P(ὪȟὫȟὡ) Verifier V(ὪȟὫȟ7)

Let Ὢὢȟὣ Б ᶰ ὢ ὣɇὡ ὥ Ὢὥ and

Ὣὢȟὣ Б ᶰ ὢ ὣɇὥ Ὣὥ

Lemma: Ὢὢȟὣ Ὣὢȟὣ ὡ ὥȟὪὥ
ᶰ

is a perm. of ὥȟὫὥ
ᶰ

(bivariate polynomials of total degree Ὧ)

To prove, use the fact that ὢȟὣ is a unique factorization domain

ZKP MOOC

The complete protocol

Prover P(ὪȟὫȟὡ) Verifier V(ὪȟὫȟ7)

ὶȟί

accept or reject

ProdCheck:

Complete and sound, assuming ςὨȾὴis negligible.

implies Ὢὢȟὣ Ὣὢȟὣ w.h.p

by Schwartz-
Zippel

prove that Ὢὶȟί Ὣὶȟί:

ὶȟίᵻ $

ZKP MOOC

Summary of proof gadgets

prescribed permutation check

permutation check

product check, sum check

zero test on ɱ

polynomial equality testing

Credit: Faithie/Shutterstock

ZKP MOOC

The PLONK IOP
for general circuits

eprint/2019/953

ZKP MOOC

PLONK: widely used in practice

The Plonk
IOP

Y½DΩмл
(pairings)

Aztec, JellyFish

Halo2
(slow verifier)
(no trusted setup)

Bulletproofs
(no pairings)

Plonky2
(no trusted setup)

FRI
(hashing)

polynomial commitment scheme SNARK system

ZKP MOOC

PLONK: a poly-IOP for a general circuit ὅὼȟύ

The computation trace (arithmetization):

ὼρ ὼς ύρ

Ҏ

ὼρ ὼς ὼς ύρ

77 inputs: 5, 6, 1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

5 6 1 example input

11

5 6

7

6
1

left
inputs

right
inputs

outputs

Step 1: compile circuit to a computation trace (gate fan-in = 2)

(Gate 0) (Gate 1)

(Gate 2)

ZKP MOOC

Encoding the trace as a polynomial

ȿὅȿḧ total # of gates in ὅ, |Ὅ| ḧ |Ὅὼ| + |Ὅύ| # inputs to ὅ

let Ὠḧσὅ ȿὍȿ(in example, Ὠ ρς) and ɱḧ { 1, ‫2Σ ΧΣ ,‫ ‫ }

The plan:

prover interpolates a polynomial Ὕᶰ [X]

that encodes the entire trace.

inputs: 5, 6, 1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77
[ŜǘΩǎ ǎŜŜ Ƙƻǿ Χ

ZKP MOOC

Encoding the trace as a polynomial

The plan: Prover interpolates Ὕᶰ [X] such that

(1) ╣encodes all inputs: T(‫ input #Ὦ for ὮҐ мΣ ΧΣ ȿὍȿ

(2) ╣encodes all wires: ᶅ ὰ πȟȣȟὅ ρ:

ÁT(:(‫σὰ left input to gate #ὰ

ÁT(‫σὰ+1): right input to gate #ὰ

ÁT(:(‫σὰ+2 output of gate #ὰ

inputs: 5, 6, 1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

ZKP MOOC

Encoding the trace as a polynomial

In our example, Prover interpolates Ὕὢ such that:

inputs: T(‫ υ, T(‫ φ, T(‫ ρ,

gate 0: T(‫ υ, T(‫ φ, T(‫ ρρ,

gate 1: T(‫ φ, T(‫ ρ, T(‫ χ,

gate 2: T(‫ ρρ, T(‫ χ, T(‫ χχ

degree(Ὕ) = 11

Prover can use FFT to compute the coefficients of T
in time /ὨÌÏÇὨ

inputs: 5, 6, 1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

ZKP MOOC

Step 2: proving validity of T

Prover P(Ὓὴȟ●ȟἿ) Verifier V(Ὓὺȟ●)

build Tὢ ᶰ [X]
Ὕ

Prover needs to prove that T is a correct computation trace:

(1) T encodes the correct inputs,

(2) every gate is evaluated correctly,

(3) the wiring is implemented correctly,

(4) the output of last gate is 0

Proving (4) is easy: prove Ὕ(‫ π

inputs: 5 , 6, 1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

(wiring constraints)

ZKP MOOC

Proving (1): T encodes the correct inputs

Both proverand verifier interpolate a polynomial ὺὢ ᶰ
ȿȿ

[X]

that encodes the ὼ-inputs to the circuit:

for Ὦ ρȟȢȢȢȟȿὍȿȡ ὺ‫ input #j

In our example: ὺ‫ υȟὺ‫ φ. (ὺis linear)

constructing ὺὢ takes time proportional to the size of input ὼ

ᵼ verifier has time do this

ZKP MOOC

Proving (1): T encodes the correct inputs

Both proverand verifier interpolate a polynomial ὺὢ ᶰ
ȿȿ

[X]

that encodes the ὼ-inputs to the circuit:

for Ὦ ρȟȢȢȢȟȿὍȿȡ ὺ‫ input #j

Let ɱinpḧ {‫ ȟ‫ ȟȣȟ‫ Ṗɱ (points encoding the input)

Prover proves (1) by using a ZeroTeston ɱinp to prove that

T(y) ὺ(y) π yᶅ ɴ ɱinp

ZKP MOOC

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selectorpolynomial S(X)

define S(X) ɴ [X] such that ᶅὰ πȟȣȟὅ ρ:

S(‫σὰ) = 1 if gate #ὰis an addition gate

S(‫σὰ) = 0 if gate #ὰis a multiplication gate

ὼρ ὼς ύρ

Ҏ

(Gate 0) (Gate 1)

(Gate 2)

inputs: 5 , 6, 1 Ὓὢ

Gate 0 (:(‫π 5 , 6 , 11 1

Gate 1 (:(‫σ 6 , 1 , 7 1

Gate 2 (:(‫φ 11, 7, 77 0

(+)
(+)
(×)

ZKP MOOC

Proving (2): every gate is evaluated correctly

T((‫2y

Then ᶅ y ɴ ɱgatesḧ { 1, ‫ωΣ ΧΣ ,‫φ ,‫σ ‫ } :

S(y)ẗ[T(y) + T(ⱷὁ)] + (1 ςS(y))ẗT(y)ẗT(ⱷὁ)

left input right input outputleft input right input

Idea: encode gate types using a selectorpolynomial S(X)

define S(X) ɴ [X] such that ᶅὰ πȟȣȟὅ ρ:

S(‫σὰ) = 1 if gate #ὰis an addition gate

S(‫σὰ) = 0 if gate #ὰis a multiplication gate

ZKP MOOC

Proving (2): every gate is evaluated correctly

S(y)ẗ[T(y) + T(‫Ùύ ҍ ¢ό‫2y) π)‫Ù)] + (1 ςS(y))ẗT(y)ẗT

Prover P(ὴὴȟ●ȟἿ) Verifier V(ὺὴȟ●)

build Tὢ ᶰ [X]
Ὕ

Setup(ὅ) ʝ ὴὴḧS and ὺὴḧ (S)

Prover uses ZeroTestto prove that for all ᶅ y ɴ ɱgates:

ZKP MOOC

Proving (3): the wiring is correct

Step 4: encode the wires of ὅ:

T((‫3)T = (‫1)T = (2-‫

T((‫0)T = (1-‫

T(‫6)T = (‫2

T((‫4)T = (3-‫

example: x1=5, x2=6 , ύρ=1

3-‫ ,2-‫ ,1-‫ : 5, 6, 1

‫2 ,‫1 ,‫0 : 5, 6, 11

‫5 ,‫4 ,‫σ : 6, 1, 7

‫8 ,‫7 ,‫φ : 11, 7, 77

0:

1:

2:

Lemma: ᶅ ώɴɱ: T(ώ) = T(W(ώ)) ᵼ wire constraints are satisfied

Define a polynomial W: ɱᶨɱ that implements a rotation:
W(‫1 ,2-‫ , ‫ρȟ‫0) = (‫0 ,1-‫)W , (2-‫ ,‫3) = (‫3 , 1ύ Σ Χ-‫

ZKP MOOC

Proving (3): the wiring is correct

Step 4: encode the wires of ὅ:

T((‫3)T = (‫1)T = (2-‫

T((‫0)T = (1-‫

T(‫6)T = (‫2

T((‫4)T = (3-‫

example: x1=5, x2=6 , ύρ=1

3-‫ ,2-‫ ,1-‫ : 5, 6, 1

‫2 ,‫1 ,‫0 : 5, 6, 11

‫5 ,‫4 ,‫σ : 6, 1, 7

‫8 ,‫7 ,‫φ : 11, 7, 77

0:

1:

2:

Lemma: ᶅ ώɴɱ: T(ώ) = T(W(ώ)) ᵼ wire constraints are satisfied

Define a polynomial W: ɱᶨɱ that implements a rotation:
W(‫1 ,2-‫ , ‫ρȟ‫0) = (‫0 ,1-‫)W , (2-‫ ,‫3) = (‫3 , 1ύ Σ Χ-‫

Proved using a prescribed permutation check

ZKP MOOC

The complete Plonk Poly-IOP (and SNARK)

Setup(ὅ) ʝ ὴὴḧ (Ὓ,ὡ) and ὺὴḧ (Ὓ and ὡ) (untrusted)

Prover proves:

(1) S(y)ẗ[T(y) + T(‫2y) π)‫Ù) T)‫Ù)] + (1 ςS(y))ẗT(y)ẗT yᶅ ɴ ɱgates

(2) T(y) ὺ(y) π yᶅ ɴ ɱinp

(3) T(y) T(ὡ(y)) π (using prescribed perm. check) yᶅ ɴ ɱ

(4) T(‫ π (output of last gate = 0)

gates:

inputs:

wires:

output:

Prover P(ὴὴȟ●ȟἿ) Verifier V(ὺὴȟ●)

build ὺὢ ᶰ
ȿȿ
ώ·ϐbuild Tὢ ᶰ [X]

Ὕ

ZKP MOOC

The complete Plonk Poly-IOP (and SNARK)

Setup(ὅ) ʝ ὴὴḧ (S,W) and ὺὴḧ (S and W)

Prover P(ὴὴȟ●ȟἿ) Verifier V(ὺὴȟ●)

build ὺὢ ᶰ
ȿȿ
ώ·ϐbuild Tὢ ᶰ [X]

Ὕ

Thm: The Plonk Poly-IOP is complete and knowledge sound,

assuming χȿὅȿȾὴis negligible
(eprint/2019/953)

ZKP MOOC

aŀƴȅ ŜȄǘŜƴǎƛƻƴǎ Χ

ÁPlonk proof: a short proof (O(1) commitments), fast verifier

ÁThe SNARK can easily be made into a zk-SNARK

Main challenge: reduce prover time

ÁHyperplonk: replace ɱwith πȟρ (where ὸ ÌÏÇȿɱȿ)

ÁThe polynomial T is now a multilinear polynomial in ὸvariables

ÁZeroTestis replaced by a multilinear SumCheck(linear time)

ZKP MOOC

A generalization: plonkisharithmetization

Plonk for circuits with gates other than + and × on rows:

Plonkishcomputation trace: (also used in AIR)
u1 v1 w1 t1 r1 s1

u2 v2 w2 t2 r2 s2

u3 v3 w3 t3 r3 s3

u4 v4 w4 t4 r4 s4

u5 v5 w5 t5 r5 s5

u6 v6 w6 t6 r6 s6

u7 v7 w7 t7 r7 s7

u8 v8 w8 t8 r8 s8

output
Plookup: ensure some values are in a pre-defined list

ᶪώᶰɱ : ὺώ‫ ύώɇὸώ ὸώ‫ π

An example custom gate:

All such gate checks are included in the gate check

Credit: Faithie/Shutterstock

ZKP MOOC

END OF LECTURE

Next lecture:
More polynomial commitments

