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Let’s build an efficient SNARK

A polynomial 
interactive

oracle proof (IOP)

A polynomial
commitment

scheme

SNARK for 
general circuits
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First, a review of polynomial commitments

Prover commits to a polynomial 𝑓(𝑋) in  𝔽𝑝
(≤𝑑)

𝑋

 eval:  for public 𝑢, 𝑣 ∈ 𝔽𝑝,  prover can convince the verifier that 

committed poly satisfies

𝑓(𝑢) = 𝑣 and   deg 𝑓 ≤ 𝑑.

 Eval proof size and verifier time should be  𝑂𝜆(log 𝒅)

verifier has  (𝑑, comf , 𝑢, 𝑣)
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The KZG poly-commit scheme  (Kate-Zaverucha-Goldberg’2010)

Group   𝔾 ≔ { 0, 𝐺, 2 ⋅ 𝐺, 3 ⋅ 𝐺 , … , 𝑝 − 1 ⋅ 𝐺 } of order 𝑝.

setup(1𝜆) ⇾ gp:
 Sample random  𝜏 ∈ 𝔽𝑝

 gp =

 delete  𝜏 !!      (trusted setup)

commit(gp, 𝑓) ⇾ comf where    comf ≔ 𝑓 𝜏 ⋅ G ∈ 𝔾

 𝑓 𝑋 = 𝑓0 + 𝑓1𝑋 + ⋯ + 𝑓𝑑𝑋𝑑 ⇒ comf = 𝑓0 ⋅ 𝐻0 + ⋯ + 𝑓𝑑 ⋅ 𝐻𝑑
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The KZG poly-commit scheme  (Kate-Zaverucha-Goldberg’2010)

Group   𝔾 ≔ { 0, 𝐺, 2 ⋅ 𝐺, 3 ⋅ 𝐺 , … , 𝑝 − 1 ⋅ 𝐺 } of order 𝑝.

setup(1𝜆) ⇾ gp:
 Sample random  𝜏 ∈ 𝔽𝑝

 gp =

 delete  𝜏 !!      (trusted setup)

commit(gp, 𝑓) ⇾ comf where    comf ≔ 𝑓 𝜏 ⋅ G ∈ 𝔾

 𝑓 𝑋 = 𝑓0 + 𝑓1𝑋 + ⋯ + 𝑓𝑑𝑋𝑑 ⇒ comf = 𝑓0 ⋅ 𝐻0 + ⋯ + 𝑓𝑑 ⋅ 𝐻𝑑

a binding commitment, 
but not hiding
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commit(gp, 𝑓) ⇾ comf where     comf = 𝑓 𝜏 ⋅ 𝐺 ∈ 𝔾

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal:  prove   𝑓(𝑢) = 𝑣

𝑓(𝑢) = 𝑣 ⇔ 𝑢 is a root of   𝑓 ≔ f−𝑣 ⇔ (X-𝑢) divides  𝑓

⇔ exists  q ∈ 𝔽𝑝 [𝑋] s.t.   q(X)⋅(X-𝑢) = f(X)−𝑣

compute  q(X)
and  comq=q(𝜏)⋅G

𝜋 ≔ comq ∈ 𝔾 accept if
(𝜏 −𝑢)⋅comq = comf − 𝑣⋅G(proof size indep. of deg. d)

The KZG poly-commit scheme  (Kate-Zaverucha-Goldberg’2010)
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commit(gp, 𝑓) ⇾ comf where     comf = 𝑓 𝜏 ⋅ 𝐺 ∈ 𝔾

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal:  prove   𝑓(𝑢) = 𝑣

𝑓(𝑢) = 𝑣 ⇔ 𝑢 is a root of   𝑓 ≔ f−𝑣 ⇔ (X-𝑢) divides  𝑓

⇔ exists  q ∈ 𝔽𝑝 [𝑋] s.t.   q(X)⋅(X-𝑢) = f(X)−𝑣

compute  q(X)
and  comq=q(𝜏)⋅G

𝜋 ≔ comq ∈ 𝔾 accept if
(𝜏 −𝑢)⋅comq = comf − 𝑣⋅G(proof size indep. of deg. d)

The KZG poly-commit scheme  (Kate-Zaverucha-Goldberg’2010)

(𝜏 −𝑢) q(𝜏) ⋅G ≟ ( f (𝜏)−v ) ⋅G
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commit(gp, 𝑓) ⇾ comf where     comf = f 𝜏 ⋅ G ∈ 𝔾

eval: Prover(gp, f, u, v) Verifier(gp, comf , u, v)
Goal:  prove   𝑓(𝑢) = 𝑣

𝑓(𝑢) = 𝑣 ⇔ 𝑢 is a root of   𝑓 ≔ f−𝑣 ⇔ (X-𝑢) divides  𝑓

⇔ exists  q ∈ 𝔽𝑝 [𝑋] s.t.   q(X)⋅(X-𝑢) = f(X)−𝑣

𝜋 ≔ comq ∈ 𝔾 accept if
(𝜏 −𝑢)⋅comq = comf − 𝑣⋅G

The KZG poly-commit scheme  (Kate-Zaverucha-Goldberg’2010)

An expensive computation 
for large 𝑑 Verifier does not know 𝜏 ⇒ uses a “pairing”

(and only needs 𝐻0, 𝐻1 from gp) 

How to prove that this is a secure PCS?    Not today …

(proof size indep. of deg. d)

compute  q(X)
and  comq=q(𝜏)⋅G
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Generalizations:

 Can also use KZG to commit to k-variate polynomials   [PST’13]

 Batch proofs:
 suppose verifier has commitments      comf1 , … comfn

 prover wants to prove    𝑓𝑖 𝑢𝑖,𝑗 = 𝑣𝑖,𝑗 for   𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]

⇒ batch proof 𝜋 is only one group element !

The KZG poly-commit scheme  (Kate-Zaverucha-Goldberg’2010)
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Properties of KZG:  linear time commitment

Two ways to represent a polynomial 𝑓(𝑋) in  𝔽𝑝
(≤𝑑)

𝑋 :

 Coefficient representation:   𝑓(𝑋) = 𝑓0 + 𝑓1𝑋 + ⋯ + 𝑓𝑑𝑋𝑑

⇒ computing comf = 𝑓0 ⋅ 𝐻0 + ⋯ + 𝑓𝑑 ⋅ 𝐻𝑑 takes linear time in 𝑑

 Point-value representation:   𝑎0, 𝑓 𝑎0 , … , 𝑎𝑑 , 𝑓 𝑎𝑑

computing comf naively: construct coefficients  𝑓0, 𝑓1, … , 𝑓𝑑

⇒ time  𝑂(𝑑 log 𝑑) using Num. Th. Transform (NTT)
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Properties of KZG:  linear time commitment

Point-value representation:   a better way to compute comf

Lagrange interpolation:  𝑓(𝜏) =  𝑖=0
𝑑 𝜆𝑖 𝜏 ∙ 𝑓(𝑎𝑖)

 Idea: transform 𝑔𝑝 into Lagrange form (a linear map)

 𝑔𝑝 =

 Now,   comf = 𝑓 𝜏 ⋅ G = 𝑓(𝑎0) ⋅  𝐻0 + ⋯ + 𝑓(𝑎𝑑) ⋅  𝐻𝑑

⇒ linear time in 𝑑.      (better than O(𝑑 log 𝑑) )

where
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KZG fast multi-point proof generation

Prover has some 𝑓(𝑋) in  𝔽𝑝
(≤𝑑)

𝑋 .       Let  Ω ⊆ 𝔽𝑝 and  |Ω| = 𝑑

Suppose prover needs evaluation proofs  𝜋𝑎 ∈ 𝐺 for all 𝑎 ∈ Ω

 Naively,  takes time  𝑂(𝑑2):    𝑑 proofs each takes time 𝑂 𝑑

 Feist-Khovratovich (FK) algorithm (2020):

 if Ω is a multiplicative subgroup:   time 𝑂(𝑑 log 𝑑)

 otherwise:  time 𝑂(𝑑 log2𝑑)

https://alinush.github.io/2021/06/17/Feist-Khovratovich-technique-for-computing-KZG-proofs-fast.html
https://alinush.github.io/2021/06/17/Feist-Khovratovich-technique-for-computing-KZG-proofs-fast.html
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The Dory polynomial commitment    (eprint/2020/1274)

Dory:

 transparent setup:   no secret randomness in setup

 comf is a single group element   (independent of degree 𝑑)

 eval proof size for 𝑓 ∈ 𝔽𝑝
(≤𝑑)

𝑋 is   O(log 𝑑)   group elements

 eval verify time is  O(log 𝑑)          Prover time:   𝑂(𝑑)

Difficulties with KZG:   trusted setup for gp, and gp size is linear in d.
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PCS have many applications

Example: vector commitment (a drop-in replacement for Merkle trees)

Bob:  vector  𝑢1, … , 𝑢𝑘 ∈ 𝔽𝑝
(≤𝑑)

Alice

interpolate poly  𝒇 s.t.:
𝒇 𝑖 = 𝑢𝑖 for  𝑖 = 1, … , 𝑘

com𝒇 ≔ commit(gp, 𝒇)

prove  𝑢2 = 𝑎, 𝑢4 = 𝑏𝜋 ≔ eval proof that  𝒇(2) = 𝑎,  𝒇(4) = 𝑏

𝜋 ∈ 𝔾 accept or
reject

(KZG:   𝜋 is a single group element)

shorter than a Merkle proof!



Credit: Faithie/Shutterstock
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Proving properties of 
committed polynomials 
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Proving properties of committed polynomials 

Prover P(𝑓, 𝑔) Verifier V(  𝑓 , 𝑔 )

Goal: convince verifier that 𝑓, 𝑔 ∈ 𝔽𝑝
(≤𝑑)

[𝑋] satisfy some properties

Proof systems presented as an IOP:
𝑟 𝑟 ⇽ 𝔽𝑝

$

𝑞

query 𝑓 𝑋 , 𝑔(𝑋), 𝑞(𝑋) at some points in 𝔽𝑝

[ V sends 𝑥 to P who responds with 𝑓(𝑥) and eval proof 𝜋 ] accept or reject
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Recall:  polynomial equality testing

Suppose  𝑝 ≈ 2256 and   𝑑 ≤ 240 so that    𝑑/𝑝 is negligible

Let    𝑓, 𝑔 ∈ 𝔽𝑝
(≤𝑑)

[𝑋].

For  𝑟⇽ 𝔽𝑝 ,      if     𝑓(𝑟) = 𝑔(𝑟) then       𝑓 = 𝑔 w.h.p

⇒ a simple equality test for two committed polynomials

𝑓(𝑟) − 𝑔(𝑟) = 0 ⇒ 𝑓 − 𝑔 = 0 w.h.p

$
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Review: the proof system as an IOP

Prover Verifier

𝒇, 𝒈

query 𝑓(X) and 𝑔 𝑋 at 𝑟

accept if:
𝑓 𝑟 = g(𝑟)

𝑟 ⇽ 𝔽𝑝
$

𝑓 𝑔

learn 𝑓 𝑟 , g(𝑟)
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Review: the compiled proof system

Prover Verifier

𝒇, 𝒈

𝑟

accept if:
(i)  𝑦 = 𝑦’, and
(ii) 𝜋𝑓, 𝜋𝑔 are    

valid

𝑟 ⇽ 𝔽𝑝
$

𝑓 𝑔

𝑦,   𝜋𝑓 𝑦′,   𝜋𝑔

𝑦 ⇽ 𝑓(𝑟)

𝑦′⇽ 𝑔(𝑟)

proof that 
𝑦 = 𝑓(𝑟)

proof that 
𝑦′ = 𝑔(𝑟)
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Review: the compiled proof system

Prover Verifier

𝒇, 𝒈

𝑟

accept if:
(i)  𝑦 = 𝑦’, and
(ii) 𝜋𝑓, 𝜋𝑔 are    

valid

𝑟 ⇽ 𝔽𝑝
$

𝑓 𝑔

𝑦,   𝜋𝑓 𝑦′,   𝜋𝑔

𝑦 ⇽ 𝑓(𝑟)

𝑦′⇽ 𝑔(𝑟)

A public coin 
protocol

Make 
non-interactive 

using Fiat-Shamir

proof that 
𝑦 = 𝑓(𝑟)

proof that 
𝑦′ = 𝑔(𝑟)
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Polynomial equality testing with KZG

For KZG: 𝑓 = 𝑔 ⟺ com𝑓 = com𝑔

⇒ verifier can tell if 𝑓 = 𝑔 on its own

But prover is needed to test equality of computed polynomials

 Example:  verifier has   𝑓 , 𝑔1 , 𝑔2 , 𝑔3 where all four are in 𝔽𝑝
(≤𝑑)

𝑋

to test if  𝑓 = 𝑔1𝑔2𝑔3:   V queries all four poly. at  𝑟 ⇽ 𝔽𝑝 and tests equality

 Complete and sound assuming 3𝑑/𝑝 is negligible      ( deg(𝑔1𝑔2𝑔3) ≤ 3𝑑 )

$
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Important proof gadgets for univariates

Let Ω be some subset of 𝔽𝑝 of size 𝑘.

Let   𝑓 ∈ 𝔽𝑝
(≤𝑑)

[𝑋] (𝑑 ≥ 𝑘) Verifier has   𝑓

Let us construct efficient Poly-IOPs for the following tasks:

Task 1 (ZeroTest):   prove that  𝑓 is identically zero on Ω

Task 2 (SumCheck): prove that    𝑎∈Ω 𝑓 𝑎 = 0

Task 3 (ProdCheck): prove that    𝑎∈Ω 𝑓(𝑎) = 1
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The vanishing polynomial

Let Ω be some subset of 𝔽𝑝 of size 𝑘.

Def:  the vanishing polynomial of Ω is   𝑍Ω(𝑋) ≔  𝑎∈Ω(𝑋 − 𝑎)

deg(𝑍Ω) = 𝑘

Let 𝜔 ∈ 𝔽𝑝 be a primitive 𝑘-th root of unity (so that  𝜔𝑘 = 1). 

 if  Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 } ⊆ 𝔽𝑝 then   𝑍Ω 𝑋 = 𝑋𝑘 − 1

⇒ for  𝑟 ∈ 𝔽𝑝,  evaluating   𝑍Ω 𝑟 takes  ≤2 log2 𝑘 field operations
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(1)  ZeroTest on Ω (Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 } )

Prover P(𝑓) Verifier V(  𝑓 )

𝑞(𝑋) ⇽ 𝑓(𝑋)/𝑍Ω(𝑋) 𝑞 ∈ 𝔽𝑝
(≤𝑑)

𝑋

query 𝑞(𝑋) and 𝑓(𝑋) at  𝑟
learn  𝑞 𝑟 , 𝑓(𝑟)

accept if   𝑓 𝑟 ≟ 𝑞(𝑟) ⋅ 𝑍Ω(𝑟)

Thm:   this protocol is complete and sound,  assuming  𝑑/𝑝 is negligible.

Lemma:  𝑓 is zero on Ω if and only if 
𝑓 𝑋 is divisible by 𝑍Ω(𝑋) (implies that 𝑓(𝑋) = 𝑞 𝑋 ∙ 𝑍Ω 𝑋 w.h.p)

verifier evaluates 
𝑍Ω(𝑟) by itself 𝑟 ⇽ 𝔽𝑝

$
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(1)  ZeroTest on Ω (Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 } )

Prover P(𝑓) Verifier V(  𝑓 )

𝑞(𝑋) ⇽ 𝑓(𝑋)/𝑍Ω(𝑋) 𝑞 ∈ 𝔽𝑝
(≤𝑑)

𝑋
𝑟 ⇽ 𝔽𝑝

query 𝑞(𝑋) and 𝑓(𝑋) at  𝑟
learn  𝑞 𝑟 , 𝑓(𝑟)

accept if   𝑓 𝑟 ≟ 𝑞(𝑟) ⋅ 𝑍Ω(𝑟)

Verifier time:  O(log 𝑘)  and  two poly queries (but can be done in one)

Prover time:  dominated by the time to compute 𝑞(𝑋) and then commit to 𝑞(𝑋)

verifier evaluates 
𝑍Ω(𝑟) by itself $
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(3)  Product check on Ω :      𝑎∈Ω 𝑓(𝑎) = 1

Set   𝑡 ∈ 𝔽𝑝
(≤𝑘)

[𝑋] to be the degree-𝑘 polynomial:

𝑡(1) = 𝑓(1), 𝑡(𝜔s) =  𝑖=0
𝑠 𝑓( 𝜔i) for 𝑠 = 1, … , 𝑘 − 1

Then t(𝜔) = 𝑓(1) ∙ 𝑓(𝜔),              t(𝜔2) = 𝑓(1) ∙ 𝑓(𝜔) ∙ 𝑓(𝜔2) ,    …

t(𝜔𝑘−1) =  𝑎∈Ω 𝑓(𝑎) = 1

and 𝑡(𝜔 ⋅ x) = 𝑡(𝑥) ⋅ 𝑓(𝜔 ⋅ x) for all   𝑥 ∈ Ω (including at  𝑥 = 𝜔𝑘−1 )
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(3)  Product check on Ω :      𝑎∈Ω 𝑓(𝑎) = 1

Set   𝑡 ∈ 𝔽𝑝
(≤𝑘)

[𝑋] to be the degree-𝑘 polynomial:

𝑡(1) = 𝑓(1), 𝑡(𝜔s) =  𝑖=0
𝑠 𝑓( 𝜔i) for 𝑠 = 1, … , 𝑘 − 1

Lemma: if (i) 𝑡(𝜔𝑘−1) = 1 and

(ii) 𝑡 𝜔 ⋅ x − 𝑡 𝑥 ⋅ 𝑓 𝜔 ⋅ x = 0 for all   𝑥 ∈ Ω

then     𝑎∈Ω 𝑓(𝑎) = 1



ZKP MOOC

(3)  Product check on Ω (unoptimized)

Prover P(𝑓) Verifier V(  𝑓 )

construct  𝑡 𝑋 ∈ 𝔽𝑝
(≤𝑘)

and 𝑡1(𝑋) = 𝑡(𝜔 ⋅ 𝑋) − 𝑡(𝑋) ⋅ 𝑓(𝜔 ⋅ 𝑋)

set   q(𝑋) = 𝑡1(𝑋)/(𝑋𝑘 − 1) ∈ 𝔽𝑝
(≤𝑑)

query  𝑡(𝑋) at   𝜔𝑘−1 , 𝑟, 𝜔𝑟
learn  𝑡(𝜔𝑘−1),   t(r),   𝑡(𝜔𝑟),   𝑞(𝑟),  𝑓(𝜔𝑟)

query 𝑞 𝑋 at  𝑟 , and  𝑓(𝑋) at 𝜔𝑟
accept if    𝑡(𝜔𝑘−1) ≟ 1    and

𝑡 𝜔𝑟 − 𝑡(𝑟)𝑓(𝜔𝑟) ≟ 𝑞(𝑟) ⋅ (𝑟𝑘 − 1)proves that 𝑡1(Ω) = 0:

𝑡 𝑞
𝑟 ⇽ 𝔽𝑝

$

𝑡1(𝑋) should be zero on Ω
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(3)  Product check on Ω (unoptimized)

Prover P(𝑓) Verifier V(  𝑓 )

construct  𝑡 𝑋 ∈ 𝔽𝑝
(≤𝑘)

and 𝑡1(𝑋) = 𝑡(𝜔 ⋅ 𝑋) − 𝑡(𝑋) ⋅ 𝑓(𝜔 ⋅ 𝑋)

set   q(𝑋) = 𝑡1(𝑋)/(𝑋𝑘 − 1) ∈ 𝔽𝑝
(≤𝑑)

query  𝑡(𝑋) at   𝜔𝑘−1 , 𝑟, 𝜔𝑟
learn  𝑡(𝜔𝑘−1),   t(r),   𝑡(𝜔𝑟),   𝑞(𝑟),  𝑓(𝜔𝑟)

query 𝑞 𝑋 at  𝑟 , and  𝑓(𝑋) at 𝜔𝑟

𝑟 ⇽ 𝔽𝑝

𝑡 𝑞

A public coin 
protocol

Proof size: two commits, five evals.   Verifier time: 𝑂 log 𝑘 .   Prover time: 𝑂(𝑘 log 𝑘).

$
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Same works for rational functions:    𝑎∈Ω(𝑓/𝑔)(𝑎) = 1

Prover P(𝑓, 𝑔) Verifier V(  𝑓 , 𝑔 )

Set   𝑡 ∈ 𝔽𝑝
(≤𝑘)

[𝑋] to be the degree-𝑘 polynomial:

𝑡(1) = 𝑓(1)/𝑔(1), 𝑡(𝜔s) =  𝑖=0
𝑠 𝑓( 𝜔i)/𝑔(𝜔i)     for 𝑠 = 1, … , 𝑘 − 1

Lemma: if (i) 𝑡(𝜔𝑘−1) = 1 and

(ii) 𝑡 𝜔 ⋅ x ⋅ 𝑔 𝜔 ⋅ x = 𝑡 𝑥 ⋅ 𝑓 𝜔 ⋅ x for all   𝑥 ∈ Ω

then     𝑎∈Ω 𝑓(𝑎)/𝑔(𝑎) = 1
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(4)  Another useful gadget:  permutation check

Let    𝑓, 𝑔 be polynomials in 𝔽𝑝
(≤𝑑)

𝑋 . Verifier has   𝑓 ,    𝑔 .

Goal:   prover wants to prove that ( 𝑓 1 , 𝑓 𝜔 , 𝑓 𝜔2 , … , 𝑓(𝜔𝑘−1) )  ∈ 𝔽𝑝
𝑘

is a permutation of ( 𝑔 1 , 𝑔 𝜔 , 𝑔 𝜔2 , … , 𝑔(𝜔𝑘−1) ) ∈ 𝔽𝑝
𝑘

⇒ Proves that  𝑔(Ω) is the same as 𝑓(Ω), just permuted



ZKP MOOC

Let      𝑓 𝑋 =  𝑎∈Ω(𝑋 − 𝑓 𝑎 ) and      𝑔 𝑋 =  𝑎∈Ω(𝑋 − 𝑔 𝑎 )

A public coin 
protocol

Prover P(𝑓, 𝑔) Verifier V(  𝑓 , 𝑔 )

Then:    𝑓 𝑋 =  𝑔 𝑋 ⟺ 𝑔 is a permutation of 𝑓

𝑟

prove that  𝑓 𝑟 =  𝑔 𝑟
prod-check:

accept or reject
[Lipton’s trick, 1989]

implies  𝑓 𝑋 =  𝑔 𝑋 w.h.p

(4)  Another useful gadget:  permutation check

𝑟 ⇽ 𝔽𝑝
$

[two commits, six evals]
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(5)  final gadget: prescribed permutation check

𝑊: Ω ⇾ Ω is a permutation of Ω if      ∀𝑖 ∈ 𝑘 : 𝑊(𝜔𝑖) = 𝜔𝑗 is a bijection

example (𝑘 = 3):     𝑊 𝜔0 = 𝜔2 , 𝑊 𝜔1 = 𝜔0 , 𝑊(𝜔2) = 𝜔1

Let    𝑓, 𝑔 be polynomials in 𝔽𝑝
(≤𝑑)

[𝑋] .     Verifier has   𝑓 ,    𝑔 ,  𝑊 .

Goal:   prover wants to prove that    𝑓(𝑦) = 𝑔(𝑊(𝑦)) for all   𝑦 ∈ Ω

⇒ Proves that  𝑔(Ω) is the same as 𝑓(Ω), permuted by the prescribed 𝑊
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Prescribed permutation check

How?    Use a zero-test to prove   𝑓 𝑦 − 𝑔 𝑊 𝑦 = 0 on Ω

The problem:    the polynomial   𝑓 𝑦 − 𝑔 𝑊 𝑦 has degree  k2

⇒ prover would need to manipulate polynomials of degree k2

⇒ quadratic time prover !!     (goal:  linear time prover)

Let’s reduce this to a prod-check on a polynomial of degree 2𝑘 (not 𝑘2)
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Prescribed permutation check

Observation:   

if   𝑊(𝑎), 𝑓 𝑎
𝑎∈Ω

is a permutation of   𝑎, 𝑔 𝑎
𝑎∈Ω

then  𝑓(𝑦) = 𝑔(𝑊(𝑦)) for all 𝑦 ∈ Ω

Proof by example:    𝑊 𝜔0 = 𝜔2 , 𝑊 𝜔1 = 𝜔0 , 𝑊(𝜔2) = 𝜔1

Right tuple: (ω0,g(ω0)),  (ω1,g(ω1)),  (ω2,g(ω2))

Left tuple: (ω2 ,f(ω0)),  (ω0 ,f(ω1)),  (ω1,f(ω2))
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Prescribed permutation check

Prover P(𝑓, 𝑔, 𝑊) Verifier V(  𝑓 , 𝑔 , W )

Let  𝑓 𝑋, 𝑌 =  𝑎∈Ω (𝑋 − 𝑌 ∙ 𝑊 𝑎 − 𝑓 𝑎 ) and    

 𝑔 𝑋, 𝑌 =  𝑎∈Ω (𝑋 − 𝑌 ∙ 𝑎 − 𝑔 𝑎 )

Lemma:    𝑓 𝑋, 𝑌 =  𝑔 𝑋, 𝑌 ⟺ 𝑊(𝑎), 𝑓 𝑎
𝑎∈Ω

is a perm. of  𝑎, 𝑔 𝑎
𝑎∈Ω

(bivariate polynomials of total degree 𝑘)

To prove, use the fact that 𝔽𝑝 𝑋, 𝑌 is a unique factorization domain 
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The complete protocol

Prover P(𝑓, 𝑔, 𝑊) Verifier V(  𝑓 , 𝑔 , W )

𝑟, 𝑠

accept or reject

ProdCheck:

Complete and sound,  assuming  2𝑑/𝑝 is negligible.

implies  𝑓 𝑋, 𝑌 =  𝑔 𝑋, 𝑌 w.h.p

by Schwartz-
Zippel

prove that  𝑓 𝑟, 𝑠 =  𝑔 𝑟, 𝑠 :

𝑟, 𝑠 ⇽ 𝔽𝑝
$
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Summary of proof gadgets

prescribed permutation check 

permutation check 

product check,    sum check 

zero test on Ω

polynomial equality testing



Credit: Faithie/Shutterstock
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The PLONK IOP
for general circuits

eprint/2019/953



ZKP MOOC

PLONK:  widely used in practice

The Plonk
IOP

KZG’10
(pairings)

Aztec,  JellyFish

Halo2
(slow verifier)
(no trusted setup)

Bulletproofs
(no pairings)

Plonky2
(no trusted setup)

FRI
(hashing)

polynomial commitment scheme SNARK system
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PLONK:  a poly-IOP for a general circuit  𝐶(𝑥, 𝑤)

The computation trace (arithmetization):

𝑥1 𝑥2 𝑤1

+ +

×

(𝑥1 + 𝑥2)(𝑥2 + 𝑤1)

77 inputs: 5,   6,   1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

5 6 1 example input

11

5 6

7

6
1

left
inputs

right
inputs

outputs

Step 1:   compile circuit to a computation trace   (gate fan-in = 2)

(Gate 0) (Gate 1)

(Gate 2)
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Encoding the trace as a polynomial

|𝐶| ≔ total # of gates in 𝐶 ,      |𝐼| ≔ |𝐼𝑥| + |𝐼𝑤| = # inputs to 𝐶

let  𝑑 ≔ 3 𝐶 + |𝐼| (in example, 𝑑 = 12) and   Ω ≔ { 1, 𝜔, 𝜔2, …, 𝜔𝑑−1 } 

The plan:

prover interpolates a polynomial   𝑇 ∈ 𝔽𝑝
(≤𝑑)

[X]

that encodes the entire trace.

inputs: 5,   6,   1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77
Let’s see how …
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Encoding the trace as a polynomial

The plan:   Prover interpolates  𝑇 ∈ 𝔽𝑝
(≤𝑑)

[X] such that 

(1)    𝑻 encodes all inputs:     T(𝜔−𝑗) = input #𝑗 for 𝑗 = 1, …, |𝐼|

(2)    𝑻 encodes all wires:       ∀ 𝑙 = 0, … , 𝐶 − 1:   

 T(𝜔3𝑙): left input to gate #𝑙

 T(𝜔3𝑙+1):  right input to gate #𝑙

 T(𝜔3𝑙+2): output of gate #𝑙

inputs: 5,   6,   1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77
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Encoding the trace as a polynomial

In our example, Prover interpolates  𝑇(𝑋) such that:

inputs: T(𝜔−1) = 5,    T(𝜔−2) = 6,    T(𝜔−3) = 1, 

gate 0: T(𝜔0) = 5,      T(𝜔1) = 6,       T(𝜔2) = 11, 

gate 1: T(𝜔3) = 6,      T(𝜔4) = 1,       T(𝜔5) = 7, 

gate 2: T(𝜔6) = 11,    T(𝜔7) = 7,      T(𝜔8) = 77

degree(𝑇) = 11

Prover can use FFT to compute the coefficients of T
in time  O(𝑑 log 𝑑)

inputs: 5,   6,   1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77
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Step 2:  proving validity of T

Prover P(𝑆𝑝, 𝒙, 𝐰) Verifier V(𝑆𝑣, 𝒙)

build    T(𝑋) ∈ 𝔽𝑝
(≤𝑑)

[X]
𝑇

Prover needs to prove that T is a correct computation trace:

(1) T encodes the correct inputs,

(2) every gate is evaluated correctly,

(3) the wiring is implemented correctly, 

(4) the output of last gate is 0

Proving (4) is easy:   prove  𝑇(𝜔3 𝐶 −1) = 0

inputs: 5 , 6,     1

Gate 0: 5 , 6 , 11

Gate 1: 6 , 1 , 7

Gate 2: 11, 7, 77

(wiring constraints)
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Proving (1):  T encodes the correct inputs

Both prover and verifier interpolate a polynomial 𝑣(𝑋) ∈ 𝔽𝑝
(≤|𝐼𝑥|)

[X]

that encodes the 𝑥-inputs to the circuit:

for  𝑗 = 1, . . . , |𝐼𝑥|: 𝑣(𝜔−𝑗) = input #j

In our example:   𝑣 𝜔−1 = 5, 𝑣 𝜔−2 = 6 .       (𝑣 is linear)

constructing  𝑣(𝑋) takes time proportional to the size of input  𝑥

⇒ verifier has time do this
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Proving (1):  T encodes the correct inputs

Both prover and verifier interpolate a polynomial 𝑣(𝑋) ∈ 𝔽𝑝
(≤|𝐼𝑥|)

[X]

that encodes the 𝑥-inputs to the circuit:

for  𝑗 = 1, . . . , |𝐼𝑥|: 𝑣(𝜔−𝑗) = input #j

Let  Ωinp ≔ { 𝜔−1, 𝜔−2, … , 𝜔− 𝐼𝑥 } ⊆ Ω (points encoding the input)

Prover proves (1) by using a ZeroTest on Ωinp to prove that     

T(y) − 𝑣(y) = 0 ∀ y ∈ Ωinp
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Proving (2):  every gate is evaluated correctly

Idea:   encode gate types using a selector polynomial  S(X)

define  S(X) ∈ 𝔽𝑝
(≤𝑑)

[X]   such that   ∀ 𝑙 = 0, … , 𝐶 − 1:   

S(𝜔3𝑙) = 1   if   gate #𝑙 is an addition gate

S(𝜔3𝑙) = 0   if   gate #𝑙 is a multiplication gate

𝑥1 𝑥2 𝑤1

+ +

×

(Gate 0) (Gate 1)

(Gate 2)

inputs: 5 , 6, 1 𝑆(𝑋)

Gate 0 (𝜔0): 5 , 6 , 11 1

Gate 1 (𝜔3): 6 , 1 , 7 1

Gate 2 (𝜔6): 11, 7, 77 0

(+)
(+)
(×)
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Proving (2):  every gate is evaluated correctly

T(𝜔2y)

Then   ∀ y ∈ Ωgates ≔ { 1, 𝜔3, 𝜔6, 𝜔9, …, 𝜔3( 𝐶 −1) } :

S(y)⋅[T(y) + T(𝝎𝐲)]  +  (1 – S(y))⋅T(y)⋅T(𝝎𝐲)  =

left input right input outputleft input right input

Idea:   encode gate types using a selector polynomial  S(X)

define  S(X) ∈ 𝔽𝑝
(≤𝑑)

[X]   such that   ∀ 𝑙 = 0, … , 𝐶 − 1:   

S(𝜔3𝑙) = 1   if   gate #𝑙 is an addition gate

S(𝜔3𝑙) = 0   if   gate #𝑙 is a multiplication gate
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Proving (2):  every gate is evaluated correctly

S(y)⋅[T(y) + T(𝜔y)]  +  (1 – S(y))⋅T(y)⋅T(𝜔y)  −  T(𝜔2y)  = 0

Prover P(𝑝𝑝, 𝒙, 𝐰) Verifier V(𝑣𝑝, 𝒙)

build    T(𝑋) ∈ 𝔽𝑝
(≤𝑑)

[X]
𝑇

Setup(𝐶)   ⇾ 𝑝𝑝≔S and   𝑣𝑝≔ (   S )

Prover uses ZeroTest to prove that for all ∀ y ∈ Ωgates :
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Proving (3):   the wiring is correct

Step 4:   encode the wires of  𝐶:

T(𝜔-2) = T(𝜔1) = T(𝜔3)

T(𝜔-1) = T(𝜔0)

T(𝜔2) = T(𝜔6)

T(𝜔-3) = T(𝜔4)

example: x1=5,  x2=6 ,  𝑤1=1

𝜔-1,  𝜔-2, 𝜔-3 :  5, 6, 1

𝜔0,  𝜔1,  𝜔2 :  5, 6, 11

𝜔3,  𝜔4,  𝜔5 :  6, 1, 7

𝜔6,  𝜔7,  𝜔8 : 11, 7, 77

0:

1:

2:

Lemma:   ∀ 𝑦∈Ω :   T(𝑦) = T(W(𝑦))   ⇒ wire constraints are satisfied

Define a polynomial   W: Ω ⇾ Ω that implements a rotation:
W(𝜔-2, 𝜔1 , 𝜔3) = (𝜔1, 𝜔3, 𝜔-2 )  ,     W(𝜔-1, 𝜔0) = (𝜔0 , 𝜔-1) ,  …
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Proving (3):   the wiring is correct

Step 4:   encode the wires of  𝐶:

T(𝜔-2) = T(𝜔1) = T(𝜔3)

T(𝜔-1) = T(𝜔0)

T(𝜔2) = T(𝜔6)

T(𝜔-3) = T(𝜔4)

example: x1=5,  x2=6 ,  𝑤1=1

𝜔-1,  𝜔-2, 𝜔-3 :  5, 6, 1

𝜔0,  𝜔1,  𝜔2 :  5, 6, 11

𝜔3,  𝜔4,  𝜔5 :  6, 1, 7

𝜔6,  𝜔7,  𝜔8 : 11, 7, 77

0:

1:

2:

Lemma:   ∀ 𝑦∈Ω :   T(𝑦) = T(W(𝑦))   ⇒ wire constraints are satisfied

Define a polynomial   W: Ω ⇾ Ω that implements a rotation:
W(𝜔-2, 𝜔1 , 𝜔3) = (𝜔1, 𝜔3, 𝜔-2 )  ,     W(𝜔-1, 𝜔0) = (𝜔0 , 𝜔-1) ,  …

Proved using a prescribed permutation check
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The complete Plonk Poly-IOP   (and SNARK)

Setup(𝐶) ⇾ 𝑝𝑝 ≔ (𝑆,𝑊)   and   𝑣𝑝 ≔ (   𝑆 and   𝑊 ) (untrusted)

Prover proves:  

(1)   S(y)⋅[T(y) + T(𝜔y)]  + (1 – S(y))⋅T(y)⋅T(𝜔y) − T(𝜔2y) = 0 ∀ y ∈ Ωgates

(2)   T(y) − 𝑣(y) = 0 ∀ y ∈ Ωinp

(3)   T(y) − T(𝑊(y)) = 0 (using prescribed perm. check) ∀ y ∈ Ω

(4)   T(𝜔3 𝐶 −1) = 0 (output of last gate = 0)

gates:

inputs:

wires:

output:

Prover P(𝑝𝑝, 𝒙, 𝐰) Verifier V(𝑣𝑝, 𝒙)

build  𝑣(𝑋) ∈ 𝔽𝑝
(≤|𝐼𝑥|)

[X]build    T(𝑋) ∈ 𝔽𝑝
(≤𝑑)

[X]
𝑇
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The complete Plonk Poly-IOP   (and SNARK)

Setup(𝐶) ⇾ 𝑝𝑝 ≔ (S,W)   and    𝑣𝑝 ≔ (   S   and   W   )

Prover P(𝑝𝑝, 𝒙, 𝐰) Verifier V(𝑣𝑝, 𝒙)

build  𝑣(𝑋) ∈ 𝔽𝑝
(≤|𝐼𝑥|)

[X]build    T(𝑋) ∈ 𝔽𝑝
(≤𝑑)

[X]
𝑇

Thm: The Plonk Poly-IOP is complete and knowledge sound, 

assuming 7|𝐶|/𝑝 is negligible
(eprint/2019/953)
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Many extensions …

 Plonk proof:   a short proof  (O(1) commitments),    fast verifier

 The SNARK can easily be made into a zk-SNARK

Main challenge:   reduce prover time

 Hyperplonk:  replace Ω with  0,1 𝑡 ( where  𝑡 = log2|Ω| )

 The polynomial T  is now a multilinear polynomial in 𝑡 variables

 ZeroTest is replaced by a multilinear SumCheck (linear time)
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A generalization:  plonkish arithmetization

Plonk for circuits with gates other than  +  and  × on rows:

Plonkish computation trace: (also used in AIR)
u1 v1 w1 t1 r1 s1

u2 v2 w2 t2 r2 s2

u3 v3 w3 t3 r3 s3

u4 v4 w4 t4 r4 s4

u5 v5 w5 t5 r5 s5

u6 v6 w6 t6 r6 s6

u7 v7 w7 t7 r7 s7

u8 v8 w8 t8 r8 s8

output
Plookup:  ensure some values are in a pre-defined list

∀ 𝑦 ∈ Ωgates:    𝑣 𝑦𝜔 + 𝑤(𝑦) ∙ 𝑡(𝑦) − 𝑡 𝑦𝜔 = 0

An example custom gate:

All such gate checks are included in the gate check 



Credit: Faithie/Shutterstock
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END OF LECTURE

Next lecture:
More polynomial commitments


