Zero Knowledge Proofs

SNARKs via Interactive Proofs

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

Recall: What is a SNARK ?

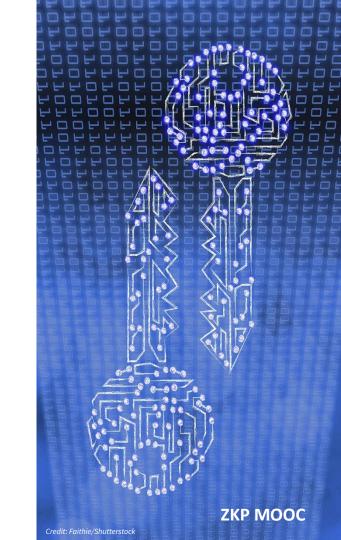
SNARK: a <u>succinct</u> proof that a certain statement is true

Example statement: "I know an *m* such that SHA256(m) = 0"

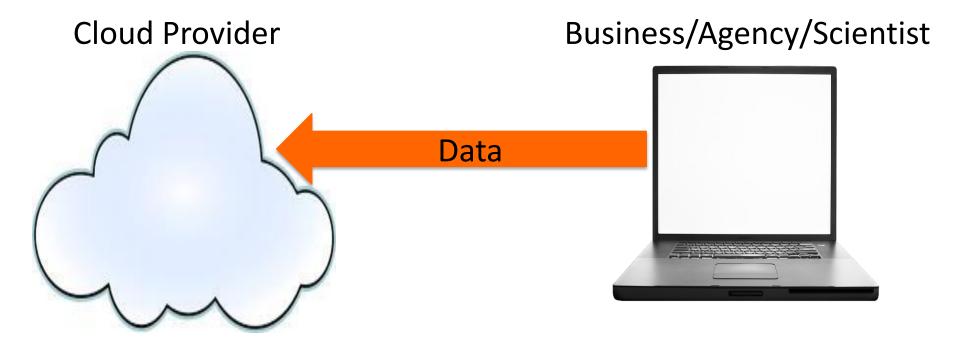
SNARK: the proof is "short" and "fast" to verify
 [if m is 1GB then the trivial proof (the message m) is neither]

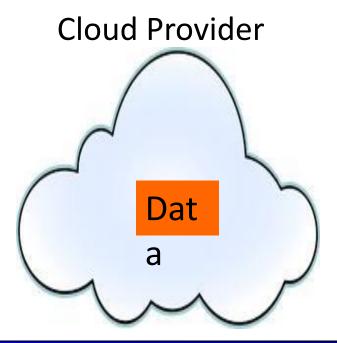
zk-SNARK: the proof "reveals nothing" about m_{-} (privacy for m)

Interactive Proofs: Motivation and Model

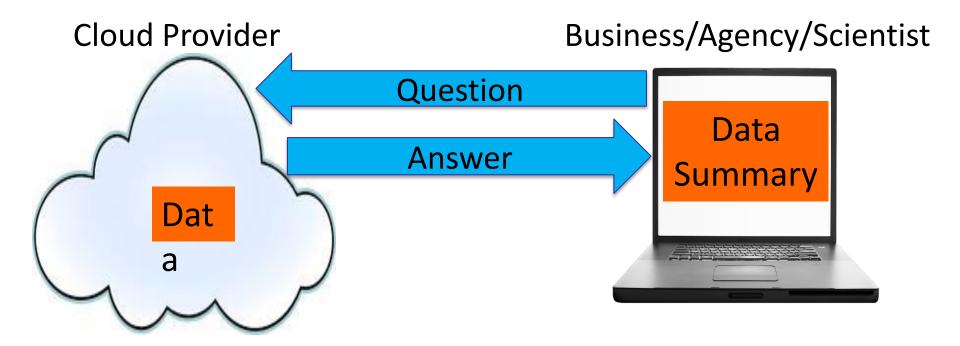


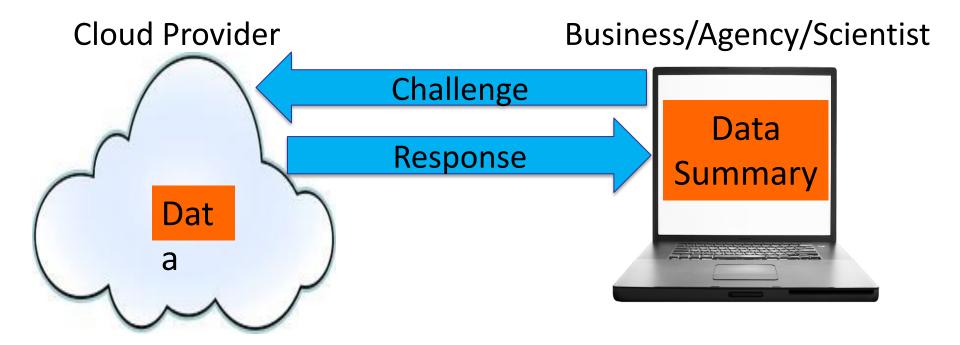
Business/Agency/Scientist

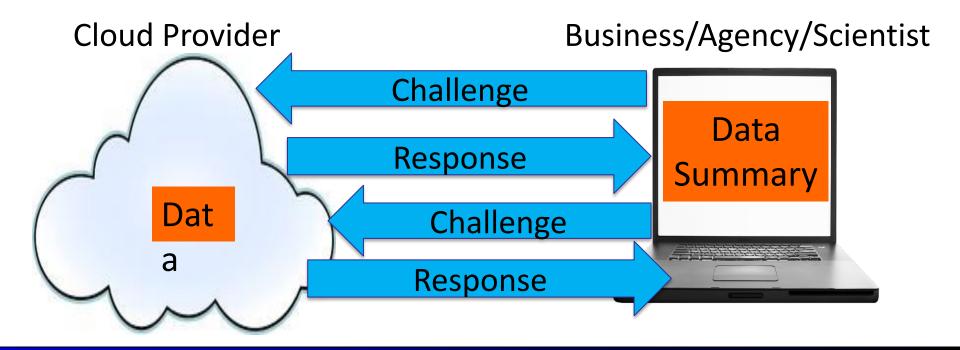


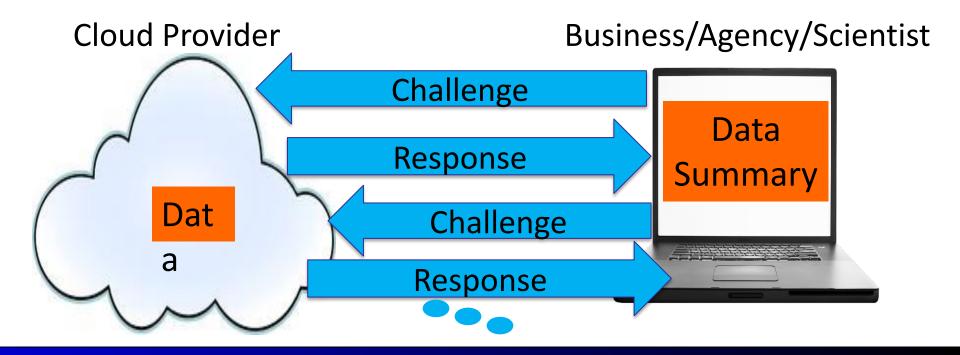


Business/Agency/Scientist

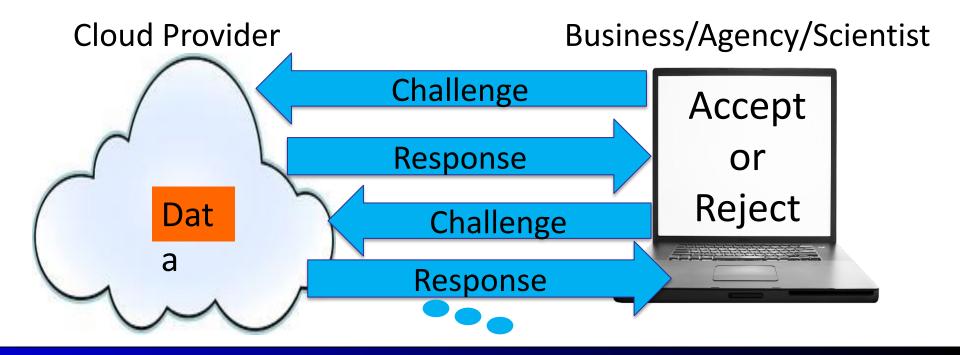








ZKP MOOC



- P solves problem, tells V the answer.
 - Then they have a conversation.
 - P's goal: convince V the answer is correct.
- Requirements:
 - 1. Completeness: an honest P can convince V to accept.
 - 2. (Statistical) Soundness: V will catch a lying P with high probability.

- P solves problem, tells V the answer.
 - Then they have a conversation.
 - P's goal: convince V the answer is correct.
- Requirements:
 - 1. Completeness: an honest P can convince V to accept.
 - 2. (Statistical) Soundness: V will catch a lying P with high probability. This must hold even if P is computationally unbounded and trying to trick V into accepting the incorrect answer.

- P solves problem, tells V the answer.
 - Then they have a conversation.
 - P's goal: convince V the answer is correct.
- Requirements:
 - 1. Completeness: an honest P can convince V to accept.
 - 2. (Statistical) Soundness: V will catch a lying P with high probability. If soundness holds only against polynomial-time provers, then the protocol is called an interactive **argument**.

 Compare soundness to knowledge soundness (last lecture) for circuit-satisfiability:

Public arithmetic circuit: $C(x, w) \rightarrow \mathbb{F}$ public statement in \mathbb{F}^n secret witness in \mathbb{F}^m

- Compare soundness to knowledge soundness (last lecture) for circuit-satisfiability:
- Sound: V accepts \Rightarrow There exists w s.t. C(x, w) = 0
- Knowledge sound: V accepts $\Rightarrow P$ "knows" w s.t. C(x, w) = 0
- Knowledge soundness is stronger.
- But standard soundness is meaningful even in contexts where knowledge soundness isn't.
 - Because there's no natural "witness".
 - E.g., P claims the output of V's program on x is 42.

- Compare soundness to knowledge soundness (last lecture) for circuit-satisfiability:
- Sound: V accepts \Rightarrow There exists w s.t. C(x, w) = 0
- Knowledge sound: V accepts $\Rightarrow P$ "knows" w s.t. C(x, w) = 0
- Knowledge soundness is stronger.
- But standard soundness is meaningful even in contexts where knowledge soundness isn't.
 - Because there's no natural "witness".
 - E.g., P claims the output of V's program on x is 42.

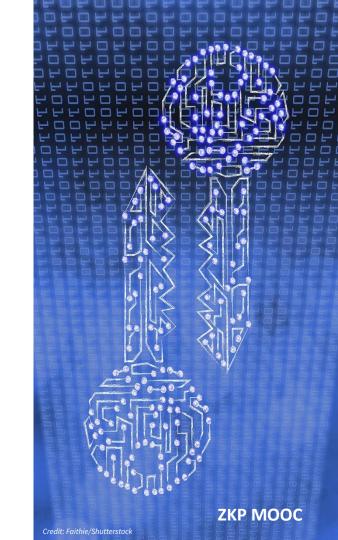
- Compare soundness to knowledge soundness (last lecture) for circuit-satisfiability:
- Sound: V accepts \Rightarrow There exists w s.t. C(x, w) = 0
- Knowledge sound: V accepts \Rightarrow P "knows" w s.t. C(x, w) = 0
- Knowledge soundness is stronger.
- But standard soundness is meaningful even in contexts where knowledge soundness isn't.
 - Because there's no natural "witness".
 - E.g., P claims the output of V's program on x is 42.

- Compare soundness to knowledge soundness (last lecture) for circuit-satisfiability:
- Sound: V accepts \Rightarrow There exists w s.t. C(x, w) = 0
- Knowledge sound: V accepts \Rightarrow P "knows" w s.t. C(x, w) = 0
- Knowledge soundness is stronger.
- Likewise, knowledge soundness is meaningful in contexts where standard soundness isn't.
 - e.g., P claims to know the secret key that controls a certain bitcoin wallet.

Public Verifiability

- Interactive proofs and arguments only convince the party that is choosing/sending the random challenges.
- This is bad if there are many verifiers (as in most blockchain applications).
 - P would have to convince each verifier separately.
- For public coin protocols, we have a solution: Fiat-Shamir.
 - Makes the protocol non-interactive + publicly verifiable.

SNARKs from interactive proofs: outline



Recall: The trivial SNARK is not a SNARK

- (a) Prover sends w to verifier,
- (b) Verifier checks if C(x, w) = 0 and accepts if so.

Problems with this:

(1) w might be long: we want a "short" proof

(2) computing C(x, w) may be hard: we want a "fast" verifier

(3) w might be secret: prover might not want to reveal w to verifier

SNARKS from Interactive Proofs (IPs)

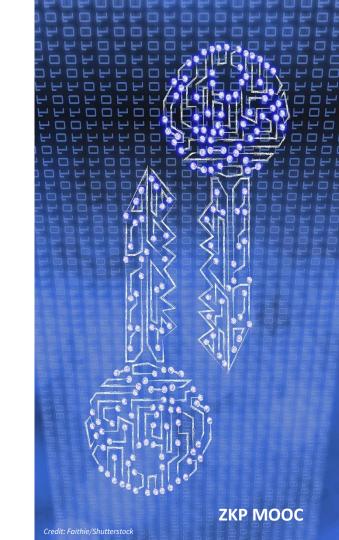
- Slightly less trivial: P sends w to V, and uses an IP to prove that w satisfies the claimed property.
 - Fast V, but proof is still too long.

Actual SNARK: P commits cryptographically to w. Uses an IP to prove that w satisfies the claimed property. Reveals just enough information about the committed witness w to allow V to run its checks in the IP. Render the protocol pop-interactive via Fiat-Shamir

SNARKS from Interactive Proofs (IPs)

- Slightly less trivial: P sends w to V, and uses an IP to prove that w satisfies the claimed property.
 - Fast V, but proof is still too long.
- Actual SNARK: P commits cryptographically to w.
 - Uses an IP to prove that w satisfies the claimed property.
 - Reveals just enough information about the committed witness w to allow V to run its checks in the IP.
 - Render non-interactive via Fiat-Shamir.

Review of functional commitments



Recall: three important functional commitments

Polynomial commitments: commit to a <u>univariate</u> f(X) in $\mathbb{F}_p^{(\leq d)}[X]$

Multilinear commitments: commit to multilinear f in $\mathbb{F}_p^{(\leq 1)}[X_1, ..., X_k]$ e.g., $f(x_1, ..., x_k) = x_1x_3 + x_1x_4x_5 + x_7$

Vector commitments (e.g., Merkle trees):

• Commit to $\vec{u} = (u_1, ..., u_d) \in \mathbb{F}_p^d$. Open cells: $f_{\vec{u}}(i) = u_i$

Inner product commitments (inner product arguments – IPA): Commit to $\vec{u} \in \mathbb{F}_p^d$. Open an inner product: $f_{\vec{u}}(\vec{v}) = (\vec{u}, \vec{v})$

Recall: three important functional commitments

Polynomial commitments: commit to a <u>univariate</u> f(X) in $\mathbb{F}_p^{(\leq d)}[X]$

Multilinear commitments: commit to multilinear f in $\mathbb{F}_p^{(\leq 1)}[X_1, ..., X_k]$ e.g., $f(x_1, ..., x_k) = x_1x_3 + x_1x_4x_5 + x_7$

Vector commitments (e.g., Merkle trees): • Commit to $\vec{u} = (u_1, ..., u_d) \in \mathbb{F}_p^d$. Open cells: $f_{\vec{u}}(i) = u_i$

Inner product commitments (inner product arguments – IPA): Commit to $\vec{u} \in \mathbb{F}_p^d$. Open an inner product: $f_{\vec{u}}(\vec{v}) = (\vec{u}, \vec{v})$

Recall: three important functional commitments

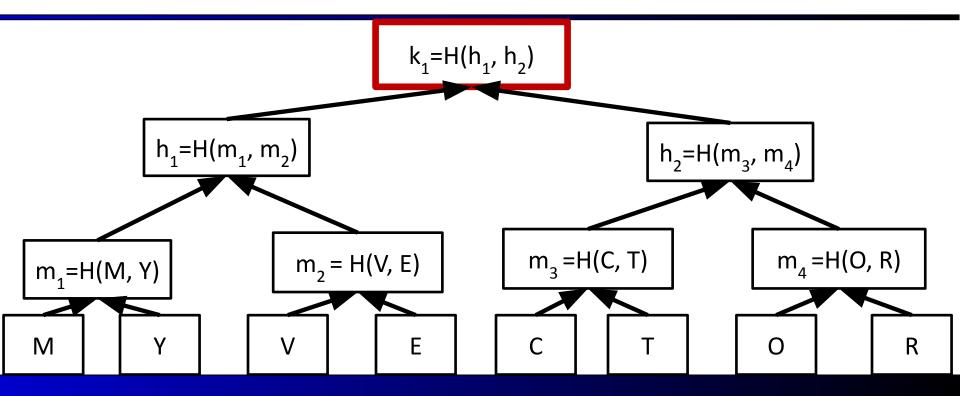
Polynomial commitments: commit to a <u>univariate</u> f(X) in $\mathbb{F}_p^{(\leq d)}[X]$

Multilinear commitments: commit to multilinear f in $\mathbb{F}_p^{(\leq 1)}[X_1, ..., X_k]$ e.g., $f(x_1, ..., x_k) = x_1x_3 + x_1x_4x_5 + x_7$

Vector commitments (e.g., Merkle trees): • Commit to $\vec{u} = (u_1, ..., u_d) \in \mathbb{F}_p^d$. Open cells: $f_{\vec{u}}(i) = u_i$

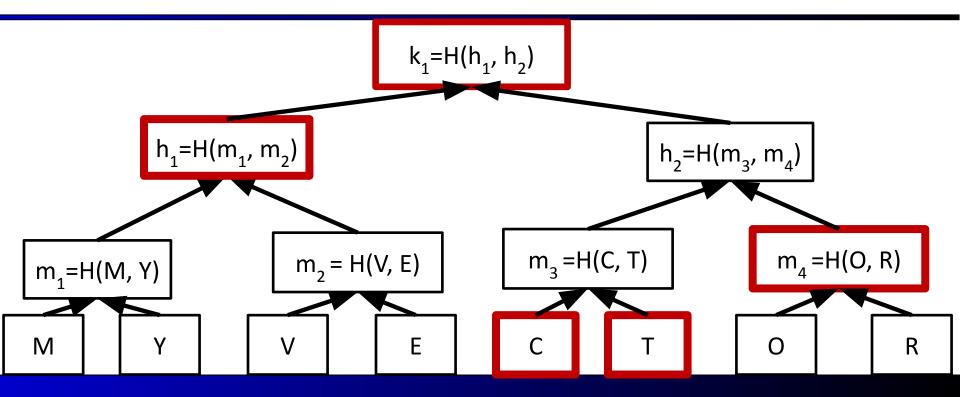
Inner product commitments (inner product arguments – IPA): Commit to $\vec{u} \in \mathbb{F}_p^d$. Open an inner product: $f_{\vec{u}}(\vec{v}) = (\vec{u}, \vec{v})$

Merkle Trees: The Commitment



ZKP MOOC

Merkle Trees: Opening Leaf T



ZKP MOOC

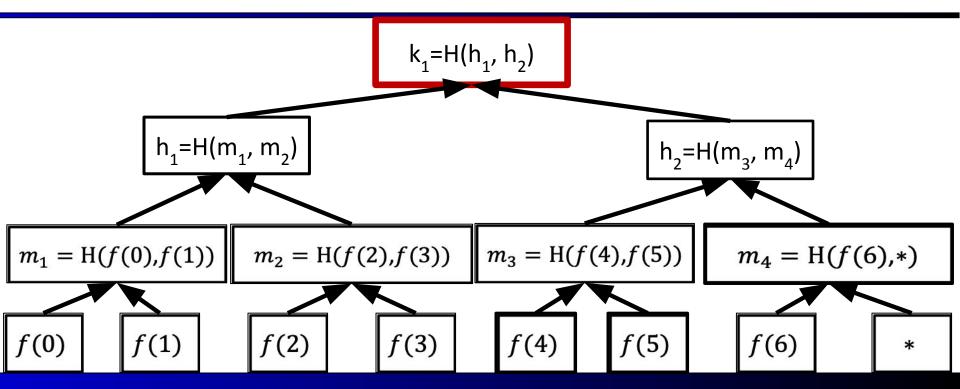
Merkle Trees

- Commitment to vector is root hash.
- To open an entry of the committed vector (leaf of the tree):
 - Send sibling hashes of all nodes on root-to-leaf path.
 - V checks these are consistent with the root hash.
 - "Opening proof" size is O(log n) hash values.

Merkle Trees

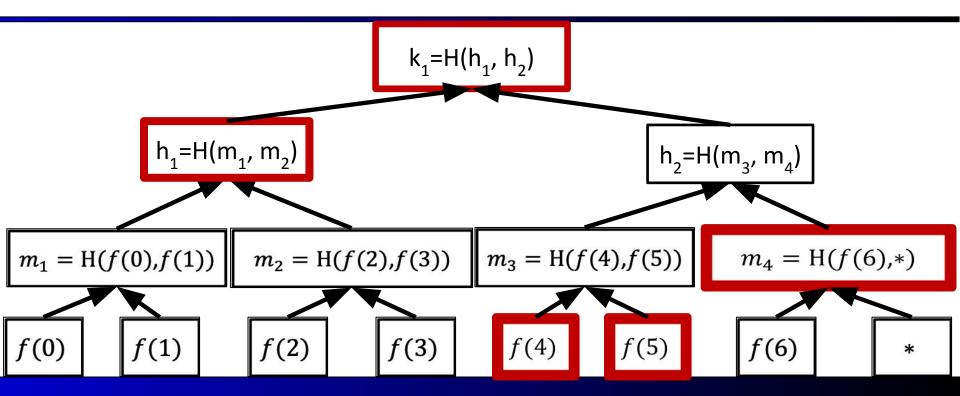
- Commitment to vector is root hash.
- To open an entry of the committed vector (leaf of the tree):
 - Send sibling hashes of all nodes on root-to-leaf path.
 - V checks these are consistent with the root hash.
 - "Opening proof" size is O(log n) hash values.
- Binding: once the root hash is sent, the committer is bound to a fixed vector.
 - Opening any leaf to two different values requires finding a hash collision (assumed to be intractable).

A First Polynomial commitment: commit to a <u>univariate</u> f(X) in $\mathbb{F}_{7}^{(\leq d)}[X]$



ZKP MOOC

Reveal f(4)



ZKP MOOC

Summary: commit to a <u>univariate</u> f(X) in $\mathbb{F}^{(\leq d)}[X]$

- P Merkle-commits to all evaluations of the polynomial *f*.
- When V requests f(r), P reveals the associated leaf along with opening information.

Two problems:

The number of leaves is [F], which means the time to compute the commitment is at least [F].

Big problem when working over large fields (say, $[F] \approx 2^{64}$ or $[F] \approx 2^{128}$). Want time proportional to the degree bound d.

V does not know if f has degree at most d!

We'll explain how to address both issues later in the course.

Summary: commit to a <u>univariate</u> f(X) in $\mathbb{F}^{(\leq d)}[X]$

- P Merkle-commits to all evaluations of the polynomial *f*.
- When V requests f(r), P reveals the associated leaf along with opening information.
- Two problems:
- 1. The number of leaves is $|\mathbb{F}|$, which means the time to compute the commitment is at least $|\mathbb{F}|$.
 - Big problem when working over large fields (say, $|\mathbb{F}| \approx 2^{64}$ or $|\mathbb{F}| \approx 2^{128}$).
 - Want time proportional to the degree bound d.
- 2. V does not know if f has degree at most d!
- We'll explain how to address both issues later in the course.

Interactive proof design: Technical preliminaries



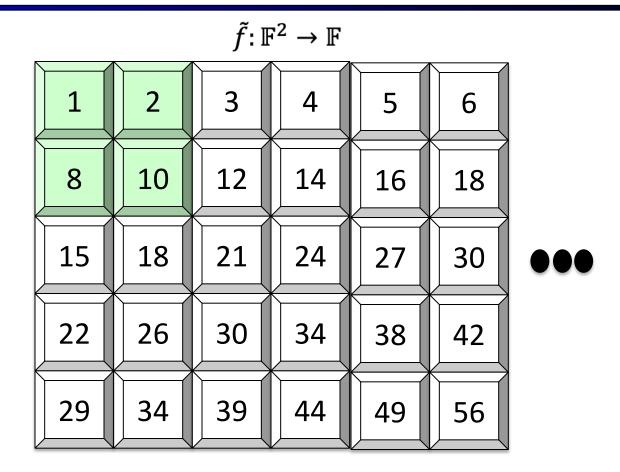
Recap: SZDL Lemma

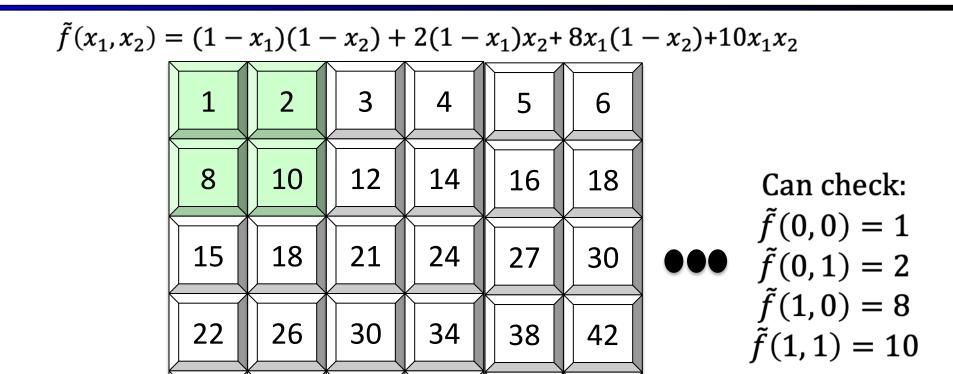
- Recall FACT: Let $p \neq q$ be univariate polynomials of degree at most d. Then $\Pr_{r \in \mathbb{F}}[p(r) = q(r)] \leq \frac{d}{|\mathbb{F}|}$.
- The Schwartz-Zippel-Demillo-Lipton lemma is a multivariate generalization:
 - Let $p \neq q$ be ℓ -variate polynomials of total degree at most d. Then $\Pr_{r \in \mathbb{F}^{\ell}}[p(r) = q(r)] \leq \frac{d}{|\mathbb{F}|}$.
 - "Total degree" refers to the maximum sum of degrees of all variables in any term. E.g., $x_1^2x_2 + x_1x_2$ has total degree 3.

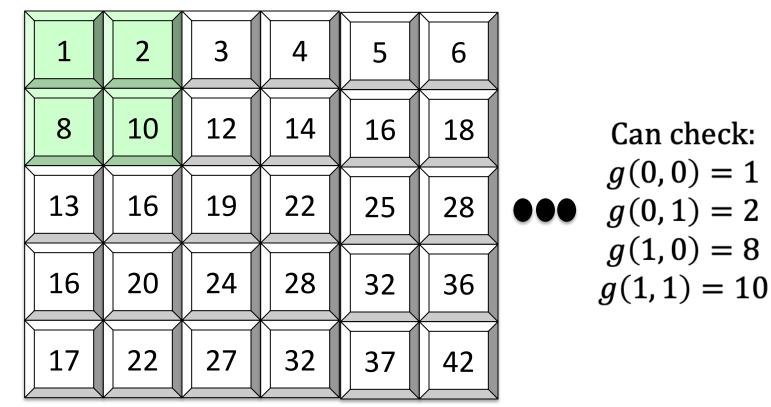
Low-Degree and Multilinear Extensions

- Definition [Extensions]. Given a function $f: \{0,1\}^{\ell} \to \mathbb{F}$, a ℓ -variate polynomial g over \mathbb{F} is said to extend f if f(x) = g(x) for all $x \in \{0,1\}^{\ell}$.
- Definition [Multilinear Extensions]. Any function
 f: {0,1}^l → F has a unique multilinear extension (MLE), denoted \tilde{f} .
 - Multilinear means the polynomial has degree at most 1 in each variable.
 - $(1 x_1)(1 x_2)$ is multilinear, $x_1^2 x_2$ is not.

 $f\!:\!\{0,\!1\}^2\!\to\mathbb{F}$







Fact: Given as input all 2^{ℓ} evaluations of a function $f: \{0,1\}^{\ell} \to \mathbb{F}$, for any point $r \in \mathbb{F}^{\ell}$ there is an $O(2^{\ell})$ -time algorithm for evaluating $\tilde{f}(r)$.

Sketch: Use Lagrange interpolation.

Define $\delta_w(r) = \prod_{i=1}^{\ell} (r_i w_i + (1 - r_i)(1 - w_i))$. This is called the mulilinear Lagrange basis polynomial corresponding to w.

Fact: $f(r) = \sum_{w \in \{0,1\}^d} f(w) \cdot \delta_w(r)$.

For each $w \in \{0,1\}^{\ell}, \delta_w(r)$ can be computed with $O(\ell)$ field operations. Yield

s an $O(\ell^2)$ -time algorithm.

- Fact: Given as input all 2^{ℓ} evaluations of a function $f: \{0,1\}^{\ell} \to \mathbb{F}$, for any point $r \in \mathbb{F}^{\ell}$ there is an $O(2^{\ell})$ -time algorithm for evaluating $\tilde{f}(r)$.
 - Sketch: Use Lagrange interpolation.
 - Define $\delta_w(r) = \prod_{i=1}^r (r_i w_i + (1 r_i)(1 w_i))$. This is called the multimear Lagrange basis polynomial corresponding to w.
 - Fact: $f(r) = \sum_{w \in \{0,1\}^d} f(w) \cdot \delta_w(r).$
 - For each $w \in \{0,1\}^{\ell}, \delta_w(r)$ can be computed with $O(\ell)$ field operations. Yield
 - s an $O(\ell^2)$ -time algorithm.

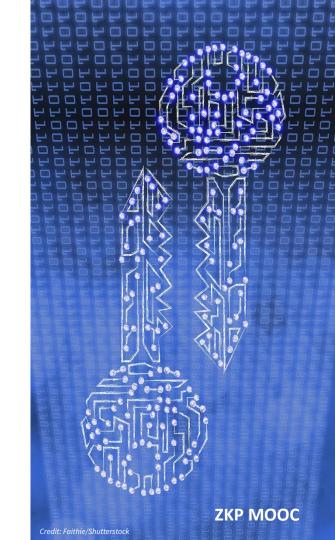
- Fact: Given as input all 2^{ℓ} evaluations of a function $f: \{0,1\}^{\ell} \to \mathbb{F}$, for any point $r \in \mathbb{F}^{\ell}$ there is an $O(2^{\ell})$ -time algorithm for evaluating $\tilde{f}(r)$.
 - Sketch: Use Lagrange interpolation.
 - Define $\tilde{\delta}_w(r) = \prod_{i=1}^{\ell} (r_i w_i + (1 r_i)(1 w_i)).$
 - This is called the **multilinear Lagrange basis polynomial corresponding to** *w*.
 - Fact: $\tilde{f}(r) = \sum_{w \in \{0,1\}^{\ell}} f(w) \cdot \tilde{\delta}_w(r)$.

For each $w \in \{0,1\}^{\ell}, \delta_w(r)$ can be computed with $O(\ell)$ field operations. Yields an $O(\ell 2^{\ell})$ -time algorithm.

Can reduce to time $O(2^{\ell})$ via dynamic programming.

- Fact: Given as input all 2^{ℓ} evaluations of a function $f: \{0,1\}^{\ell} \to \mathbb{F}$, for any point $r \in \mathbb{F}^{\ell}$ there is an $O(2^{\ell})$ -time algorithm for evaluating $\tilde{f}(r)$.
 - Sketch: Use Lagrange interpolation.
 - Define $\tilde{\delta}_w(r) = \prod_{i=1}^{\ell} (r_i w_i + (1 r_i)(1 w_i)).$
 - This is called the **multilinear Lagrange basis polynomial corresponding to** *w*.
 - Fact: $\tilde{f}(r) = \sum_{w \in \{0,1\}^{\ell}} f(w) \cdot \tilde{\delta}_w(r)$.
 - For each $w \in \{0,1\}^{\ell}$, $\tilde{\delta}_w(r)$ can be computed with $O(\ell)$ field operations.
 - Yields an $O(\ell 2^{\ell})$ -time algorithm.
 - Can reduce to time $O(2^{\ell})$ via dynamic programming.

The sum-check protocol



- Input: V given oracle access to a ℓ-variate polynomial g over field F.
- Goal: compute the quantity:

$$\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

Start: P sends claimed answer C_1 . The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

Round 1: P sends univariate polynomial $s_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

V checks that $C_1 = s_1(0) + s_1(1)$.

If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.

How to check this? Just check that s_1 and H_1 agree at a random point r_1 .

Start: P sends claimed answer C_1 . The protocol must check that:

$$C_{1} = \sum_{b_{1} \in \{0,1\}} \sum_{b_{2} \in \{0,1\}} \dots \sum_{b_{\ell} \in \{0,1\}} g(b_{1}, \dots, b_{\ell}).$$

• **Round 1**: P sends **univariate** polynomial $s_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

V checks that $C_1 = s_1(0) + s_1(1)$.

If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.

How to check this? Just check that s_1 and H_1 agree at a random point r_1 .

Start: P sends claimed answer C_1 . The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

Round 1: P sends univariate polynomial s₁(X₁) claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.

How to check this? Just check that s_1 and H_1 agree at a random point r_1 .

Start: P sends claimed answer C_1 . The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

• **Round 1**: **P** sends **univariate** polynomial $s_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- If this check passes, it is safe for V to believe that C₁ is the correct answer, so long as V believes that s₁ = H₁.
- How to check this? Just check that s₁ and H₁ agree at a random point r₁.

Start: P sends claimed answer C_1 . The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

Round 1: P sends univariate polynomial s₁(X₁) claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- If this check passes, it is safe for V to believe that C₁ is the correct answer, so long as V believes that s₁ = H₁.
- How to check this? Just check that s₁ and H₁ agree at a random point r₁.
- V can compute $s_1(r_1)$ directly from P's first message, but not $H_1(r_1)$.

Start: P sends claimed answer C_1 . The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

Round 1: P sends univariate polynomial s₁(X₁) claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from \mathbb{F} and sends r_1 to P.
- **Round 2**: They recursively check that $s_1(r_1) = H_1(r_1)$.

i.e., that $s_1(r_1) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell).$

Start: P sends claimed answer C_1 . The protocol must check that:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

Round 1: P sends univariate polynomial s₁(X₁) claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

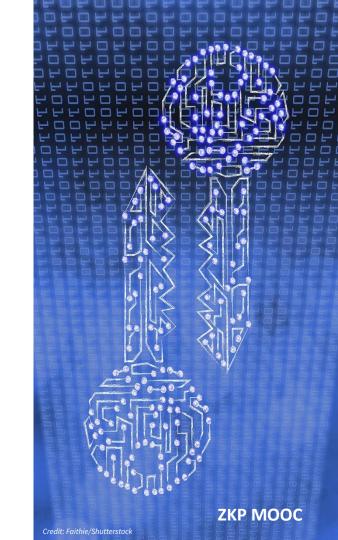
- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r₁ at random from 𝔽 and sends r₁ to P.
- Round 2: They recursively check that $s_1(r_1) = H_1(r_1)$. i.e., that $s_1(r_1) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell)$.

■ Round ℓ (Final round): P sends univariate polynomial $s_{\ell}(X_{\ell})$ claimed to equal

$$H_{\ell} := g(r_1, \dots, r_{\ell-1}, X_{\ell}).$$

- V checks that $s_{\ell-1}(r_{\ell-1}) = s_{\ell}(0) + s_{\ell}(1)$.
- V picks r_{ℓ} at random, and needs to check that $s_{\ell}(r_{\ell}) = g(r_1, ..., r_{\ell})$.
 - No need for more rounds. V can perform this check with one oracle query.

Analysis of the sum-check protocol



Completeness

 Completeness holds by design: If P sends the prescribed messages, then all of V's checks will pass.

- If P does not send the prescribed messages, then V rejects with probability at least $1 \frac{\ell \cdot d}{|\mathbb{F}|}$, where d is the maximum degree of g in any variable.
- E.g. $|\mathbb{F}| \approx 2^{128}$, d = 3, $\ell = 60$.
 - Then soundness error is at most $3 \cdot 60/2^{128} = 2^{-120}$.

- If P does not send the prescribed messages, then V rejects with probability at least $1 \frac{\ell \cdot d}{|\mathbb{F}|}$, where d is the maximum degree of g in any variable.
- Proof is by induction on the number of variables ℓ .
 - Base case: ℓ = 1. In this case, P sends a single message s₁(X₁) claimed to equal g(X₁). V picks r₁ at random, checks that s₁(r₁) = g(r₁).

• If
$$s_1 \neq g$$
, then $\Pr_{r_1 \in \mathbb{F}}[s_1(r_1) = g(r_1)] \leq \frac{d}{|\mathbb{F}|}$.

Inductive case: $\ell > 1$.

Recall: P's first message s₁(X₁) is claimed to equal

 $H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$

Then V picks a random r₁ and sends r₁ to P. They (recursively) invoke sum-check to confirm that s₁(r₁) = H₁(r₁).

If $s_1 \neq H_1$, then $\Pr_{r_1 \in \mathbb{P}}[s_1(r_1) = H(r_1)] \leq \frac{a}{|\mathbb{P}|}$.

If $s_1(r_1) \neq H(r_1)$, P is left to prove a false claim in the recursive call. The recursive call applies sum-check to $g(r_1, X_2, ..., X_\ell)$, which is ℓ -1 variate. By induction, P fails to convince V in the recursive call with probability at least 1 —

IInductive case: $\ell > 1$.

- Recall: P's first message $s_1(X_1)$ is claimed to equal $H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$
- Then V picks a random r₁ and sends r₁ to P. They (recursively) invoke sum-check to confirm that s₁(r₁) = H₁(r₁).
- If $s_1 \neq H_1$, then $\Pr_{r_1 \in \mathbb{F}}[s_1(r_1) = H_1(r_1)] \le \frac{d}{|\mathbb{F}|}$.
- If $s_1(r_1) \neq H_1(r_1)$, **P** is left to prove a false claim in the recursive call.
 - The recursive call applies sum-check to $g(r_1, X_2, ..., X_\ell)$, which is ℓ -1 variate.
 - By induction, P convinces V in the recursive call with probability at most $\frac{d(\ell-1)}{|\mathbf{r}|}$.

Soundness analysis: wrap-up

• Summary: if $s_1 \neq H_1$, the probability V accepts is at most:

$$\Pr_{r_1 \in \mathbb{F}}[s_1(r_1) = H(r_1)] + \Pr_{r_2, \dots, r_\ell \in \mathbb{F}}[\mathsf{V} \operatorname{accepts}|s_1(r_1) \neq H(r_1)]$$

$$\leq \frac{d}{|\mathbb{F}|} + \frac{d(\ell-1)}{|\mathbb{F}|} \leq \frac{d\ell}{|\mathbb{F}|}.$$

ZKP MOOC

Costs of the sum-check protocol

Total communication is $O(d\ell)$ field elements.

 P sends ℓ messages, each a univariate polynomial of degree at most d. V sends ℓ − 1 messages, each consisting of one field element.

V's runtime is: O(df + [time required to evaluate g at one point]).

P's runtime is at most:

 $O(d \cdot 2^{\ell} \cdot [time required to evaluate g at one point]).$

Costs of the sum-check protocol

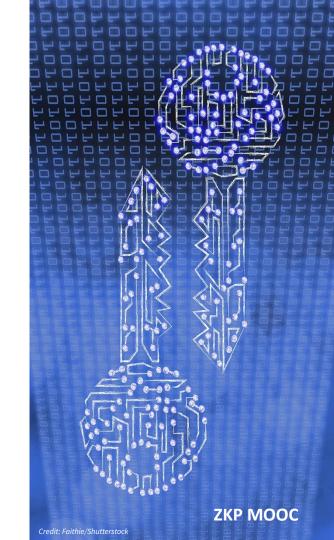
- **Total communication is** $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends ℓ − 1 messages, each consisting of one field element.
- V's runtime is:

 $O(d\ell + [time required to evaluate g at one point]).$

P's runtime is at most:

 $O(d \cdot 2^{\ell} \cdot [time required to evaluate g at one point]).$

A first application of the sum-check protocol: An IP for counting triangles with linear-time verifier



Costs of the sum-check protocol

- **Total communication is** $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends ℓ − 1 messages, each consisting of one field element.
- V's runtime is:

 $O(d\ell + [time required to evaluate g at one point]).$

P's runtime is at most:

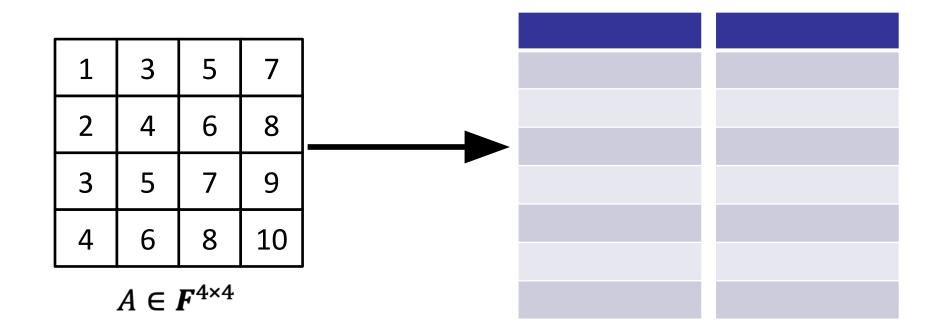
 $O(d \cdot 2^{\ell} \cdot [time required to evaluate g at one point]).$

Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\sum_{(i,j,k)\in[n]^3} A_{ij}A_{jk}A_{ik}$.
- Fastest known algorithm runs in matrix-multiplication time, currently about n^{2.37}.

Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\sum_{(i,j,k)\in[n]^3} A_{ij}A_{jk}A_{ik}$.
- The Protocol:
 - View A as a function mapping {0,1}^{log n} × {0,1}^{log n} to F.



ZKP MOOC

Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\sum_{(i,j,k)\in[n]^3} A_{ij}A_{jk}A_{ik}$.
- The Protocol:
 - View A as a function mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ to \mathbb{F} .
 - Recall that \tilde{A} denotes the multilinear extension of A.
 - Define the polynomial $g(X, Y, Z) = \tilde{A}(X, Y) \tilde{A}(Y, Z) \tilde{A}(X, Z)$
 - Apply the sum-check protocol to g to compute:

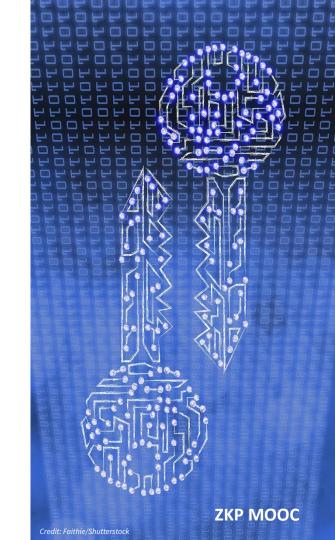
$$\sum_{(a,b,c)\in\{0,1\}^{3\log n}}g(a,b,c)$$

Counting Triangles

Costs:

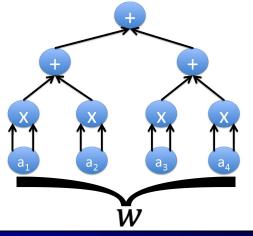
- Total communication is O(log n), ∨ runtime is O(n²), P runtime is O(n³).
- V's runtime dominated by evaluating: $g(r_1, r_2, r_3) = \tilde{A}(r_1, r_2) \tilde{A}(r_2, r_3) \tilde{A}(r_1, r_3).$

A SNARK for circuit-satisfiability



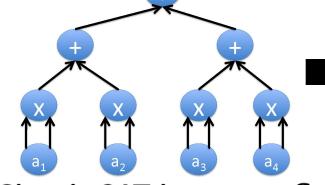
Recall: SNARKs for circuit-satisfiability

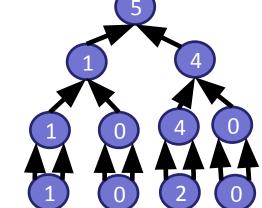
- Given: An arithmetic circuit C over \mathbb{F} of size S and output y.
- P claims to know a w such that C(x, w) = y.
- For simplicity, let's take x to be the empty input.



Recall: SNARKs for circuit-satisfiability

- A **transcript** *T* for *C* is an assignment of a value to every gate.
 - T is a correct transcript if it assigns the gate values obtained by evaluating C on a valid witness w.





Circuit-SAT instance C

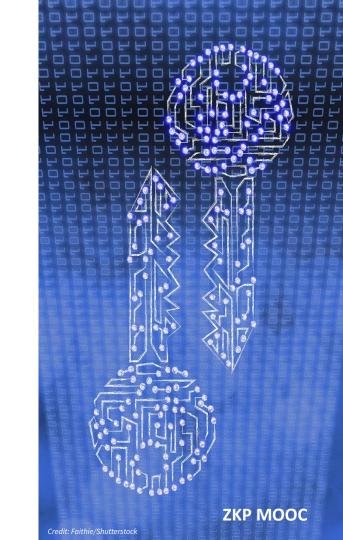
Correct transcript for C yielding output 5.

Viewing a transcript as a **function** with domain $\{0,1\}^{\log S}$

Assign each gate in C a (log S)-bit label and view T as a function mapping gate labels to \mathbb{F} .



The polynomial IOP underlying the SNARK



The start of the polynomial IOP

- Assign each gate in C a $(\log S)$ -bit label and view T as a function mapping gate labels to \mathbb{F} .
- P's first message is a (log S)-variate polynomial h claimed to extend a correct transcript T, which means:

 $h(x) = T(x) \forall x \in \{0, 1\}^{\log S}.$

V needs to check this, but is only able to learn a few evaluations of *h*.

The start of the polynomial IOP

- Assign each gate in C a $(\log S)$ -bit label and view T as a function mapping gate labels to \mathbb{F} .
- P's first message is a (log S)-variate polynomial h claimed to extend a correct transcript T, which means:

$$h(x) = T(x) \forall x \in \{0, 1\}^{\log S}.$$

• V needs to check this, but is only able to learn a few evaluations of h.

Intuition for why h is a useful object for P to send

- Think of *h* as a **distance-amplified encoding** of the transcript *T*.
- The domain of T is $\{0, 1\}^{\log S}$. The domain of h is $\mathbb{F}^{\log S}$, which is vastly bigger.

Intuition for why h is a useful object for P to send

- Think of *h* as a **distance-amplified encoding** of the transcript *T*.
- The domain of T is $\{0, 1\}^{\log S}$. The domain of h is $\mathbb{F}^{\log S}$, which is vastly bigger.

	0	1
0	1	2
1	1	4

All four evaluations of a function T mapping $\{0,1\}^2$ to F_5

	0	1	2	3	4
0	1	2	3	4	0
1	1	4	2	0	3
2	1	1	1	1	1
3	1	3	0	2	4
4	1	0	4	3	2

All 25 evaluations of the multilinear polynomial h that extends T, one for each element of $F_5 \times F_5$

Intuition for why h is a useful object for P to send

- Think of *h* as a **distance-amplified encoding** of the transcript *T*.
- The domain of T is $\{0, 1\}^{\log S}$. The domain of h is $\mathbb{F}^{\log S}$, which is vastly bigger.
- Schwartz-Zippel: If two transcripts T, T' disagree at even a single gate value, their extension polynomials h, h' disagree at almost all points in $\mathbb{F}^{\log S}$.
 - Specifically, a $1 \log(S) / |\mathbb{F}|$ fraction.
- Distance-amplifying nature of the encoding will enable V to detect even a single "inconsistency" in the entire transcript.

Reminder: the start of the polynomial IOP

P's first message is a (log S)-variate polynomial h claimed to extend a correct transcript T, which means:

 $h(x) = T(x) \forall x \in \{0, 1\}^{\log S}.$

V needs to check this, but is only able to learn a few evaluations of h.

Two-step plan of attack

- 1. Given any (log S)-variate polynomial h, identify a related (3log S)-variate polynomial g_h such that:
 - *h* extends a correct transcript $T \Leftrightarrow g_h(a, b, c) = 0 \ \forall (a, b, c) \in \{0, 1\}^{3 \log S}$.
 - Moreover, to evaluate g_h(r) at any input r, suffices to evaluate h at only 3 inputs.
 - 2. Design an interactive proof to check that $g_h(a, b, c) = 0 \forall (a, b, c) \in \{0, 1\}^{3 \log S}$.
 - In which V only needs to evaluate $g_h(r)$ at one point r.

Step 1 of the plan

Given $(\log S)$ -variate polynomial h, identify a related $(3\log S)$ -variate polynomial g_h such that: h extends a correct transcript $T \Leftrightarrow g_h(a, b, c) = 0 \forall (a, b, c) \in \{0, 1\}^{3 \log S}$.

• And to evaluate $g_h(r)$ at any r, suffices to evaluate h at only 3 inputs.

Proof sketch (simplification): Define $g_h(a, b, c)$ via:

 $\widetilde{add}(a,b,c)\cdot (h(a) - (h(b) + h(c))) + \widetilde{mult}(a,b,c)\cdot (h(a) - h(b)\cdot h(c)).$

 $g_h(a, b, c) = h(a) - (h(b) + h(c))$ if a is the label of a gate that computes the sum of gates b and c.

 $g_h(a, b, c) = h(a) - h(b) \cdot h(c)$ if a is the label of a gate that computes the product of gates b and c.

 $g_h(a, b, c) = 0$ otherwise.

Step 1 of the plan

- Given $(\log S)$ -variate polynomial h, identify a related $(3\log S)$ -variate polynomial g_h such that: h extends a correct transcript $T \Leftrightarrow g_h(a, b, c) = 0 \ \forall (a, b, c) \in \{0, 1\}^{3 \log S}$.
 - And to evaluate $g_h(r)$ at any r, suffices to evaluate h at only 3 inputs.
 - Proof sketch (simplification): Define $g_h(a, b, c)$ via: $add(a, b, c) \cdot (h(a) - (h(b) + h(c))) + mult(a, b, c) \cdot (h(a) - h(b) \cdot h(c)).$

sum of gates *b* and *c*.

 $g_h(a, b, c) = h(a) - h(b) \cdot h(c)$ if a is the label of a gate that computes the product of gates b and c.

 $g_h(a, b, c) = 0$ otherwise.

Step 1 of the plan

- Given $(\log S)$ -variate polynomial h, identify a related $(3\log S)$ -variate polynomial g_h such that: h extends a correct transcript $T \Leftrightarrow g_h(a, b, c) = 0 \ \forall (a, b, c) \in \{0, 1\}^{3 \log S}$.
 - And to evaluate $g_h(r)$ at any r, suffices to evaluate h at only 3 inputs.
- Proof sketch (simplification): Define $g_h(a, b, c)$ via: $\widetilde{add}(a, b, c) \cdot \left(h(a) - \left(h(b) + h(c)\right)\right) + \widetilde{mult}(a, b, c) \cdot \left(h(a) - h(b) \cdot h(c)\right).$
 - 1. $g_h(a, b, c) = h(a) (h(b) + h(c))$ if a is the label of a gate that computes the sum of gates b and c.
 - 2. $g_h(a, b, c) = h(a) h(b) \cdot h(c)$ if a is the label of a gate that computes the **product** of gates b and c.
 - 3. $g_h(a, b, c) = 0$ otherwise.

Step 2: A Hint

- How to check that $g_h(a, b, c) = 0 \forall (a, b, c) \in \{0, 1\}^{3 \log S}$?
 - With V only evaluating g_h at a single point?
 - Imagine for a moment that g_h were a **univariate** polynomial $g_h(X)$.
 - And rather than needing to check that g_h vanishes over input set $\{0,1\}^{3 \log S}$, we needed to check that g_h vanishes over some set $H \subseteq \mathbb{F}$.

Fact: $g_h(x) = 0$ for all $x \in H \Leftrightarrow g_h$ is divisible by $Z_H(x) \coloneqq \prod_{a \in H} (x - a)$. Z_H is called the vanishing polynomial for H.

Polynomial IOP:

P sends a polynomial q such that $g_h(X) = q(X) \cdot Z_H(X)$.

V checks this by picking a random $r \in \mathbb{F}$ and checking that $g_h(r) = q(r) \cdot Z_H(r)$.

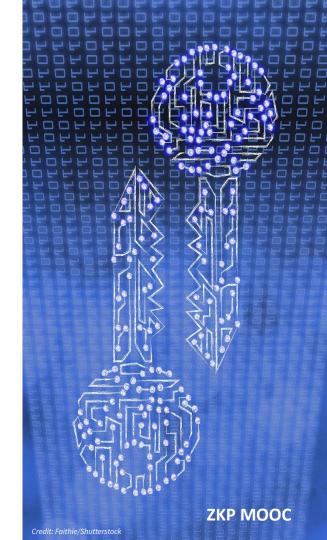
Step 2: A Hint

- How to check that $g_h(a, b, c) = 0 \forall (a, b, c) \in \{0, 1\}^{3 \log S}$?
 - With V only evaluating g_h at a single point?
 - Imagine for a moment that g_h were a **univariate** polynomial $g_h(X)$.
 - And rather than needing to check that g_h vanishes over input set $\{0,1\}^{3 \log S}$, we needed to check that g_h vanishes over some set $H \subseteq \mathbb{F}$.
- Fact: $g_h(x) = 0$ for all $x \in H \Leftrightarrow g_h$ is divisible by $Z_H(x) \coloneqq \prod_{a \in H} (x a)$.
 - Z_H is called the vanishing polynomial for *H*.
- Polynomial IOP:
 - P sends a polynomial q such that $g_h(X) = q(X) \cdot Z_H(X)$.
 - V checks this by picking a random $r \in \mathbb{F}$ and checking that $g_h(r) = q(r) \cdot Z_H(r)$.

The actual protocol

- Previous slide doesn't actually work.
 - g_h is not univariate, it has $3 \log S$ variables.
 - Also, having P find and send the quotient polynomial is expensive.
 - In the final SNARK, this would mean applying polynomial commitment to additional polynomials.
 - This is what Marlin, PlonK, and Groth16 do.
 - Solution: use the sum-check protocol [LFKN90].
 - Handles multivariate polynomials.
 - Doesn't require P to send additional large polynomials.

Recall sum-check



Sum-check protocol: a reminder

Goal: compute the quantity:

$$\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

- Proof length is roughly the total degree of g.
- Number of rounds is ℓ .
- V time is roughly the time to evaluate g at a single randomly chosen input.
- To run the protocol, V doesn't even need to "know" what polynomial g is being summed, so long as it knows g(r) for a randomly chosen input r ∈ F^ℓ.

The polynomial IOP for circuit-satisfiability

- How to check that $g_h(a, b, c) = 0 \forall (a, b, c) \in \{0, 1\}^{3 \log S}$?
 - With V only evaluating g_h at a single point?
- General idea (working over the integers instead of \mathbb{F}):
 - V checks this by running sum-check protocol with P to compute:

$$\sum_{a,b,c\in\{0,1\}^{\log s}}g_h(a,b,c)^2.$$

- If all terms in the sum are 0, the sum is 0.
- If working over the integers, any non-zero term in the sum will cause the sum to be strictly positive.

The polynomial IOP for circuit-satisfiability

- How to check that $g_h(a, b, c) = 0 \forall (a, b, c) \in \{0, 1\}^{3 \log S}$?
 - With V only evaluating g_h at a single point?
- General idea (working over the integers instead of \mathbb{F}):
 - V checks this by running sum-check protocol with P to compute:

$$\sum_{a,b,c\in\{0,1\}^{\log s}}g_h(a,b,c)^2.$$

- At end of sum-check protocol, V needs to evaluate $g_h(r_1, r_2, r_3)$.
 - Suffices to evaluate $h(r_1), h(r_2), h(r_3)$.
 - Outside of these evaluations, \vee runs in time $O(\log S)$.
 - P performs O(S) field operations given a witness w.

END OF LECTURE

