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secure multiparty

computation
Blockchains and cryptocurrencies

Cryptographic Proofs
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What does theoretical research 
on proof systems look like?
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Theoretical Research on Cryptographic Proofs

Feasibility (do they exist in principle?)
▪ SNAR(G/K)s, other protocols (ZK, WI, WH, etc.)
▪ Strong attack models (Concurrent? Quantum?)

Minimize Assumptions (to the extent possible)
▪ Trusted setup
▪ Security Reduction based on simple, well-studied, falsifiable assumptions.

Improve efficiency

▪ Amount of communication, number of rounds
▪ Prover/verifier efficiency
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Example: Interactive ZK
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Interactive Zero-Knowledge Protocols

▪ No trusted setup allowed.
▪ Security against Malicious verifier hard to guarantee.

▪ Lecture 1: ZK for NP [GMW86] with inverse poly 
soundness error. How do we reduce the error?

▪ Sequential repetition works (but very inefficient).

▪ Parallel repetition reduces soundness error but *may not* 
preserve ZK! Let’s see why:

9
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𝑃 𝑉

Zero Knowledge Proofs for NP

𝑎 𝑏

𝑐

𝑑𝑒

𝑓
Claim: This graph has a 3-coloring.

𝑎 𝑏

𝑐

𝑑𝑒

𝑓
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𝑉

Zero Knowledge Proofs for NP

𝑎 𝑏

𝑐

𝑑𝑒

𝑓
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𝑃
𝑓

1) Randomize colors

0 1 2

𝑎 𝑏

𝑐

𝑑𝑒

𝑓
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𝑉

Zero Knowledge Proofs for NP
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𝑓
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𝑃
𝑓

1) Randomize colors

0 1 2

𝑎 𝑏

𝑐

𝑑𝑒

𝑓

2) Commit



ZKP MOOC

𝑉

Zero Knowledge Proofs for NP

𝑎 𝑏

𝑐

𝑑𝑒

𝑓
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𝑃
𝑓

1) Randomize colors

0 1 2

𝑎 𝑏

𝑐

𝑑𝑒

𝑓

2) Commit
(𝑑, 𝑓) 1) Sample a challenge edge.



ZKP MOOC

𝑉

Zero Knowledge Proofs for NP

𝑎 𝑏

𝑐

𝑑𝑒

𝑓
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𝑃
𝑓

0 1 2

𝑎 𝑏

𝑐

𝑑𝑒

𝑓

2) Commit
(𝑑, 𝑓) 1) Sample a challenge edge.

21

3) Reveal edge colors 2) Accept if colors are different.
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𝑉∗

Zero Knowledge Proofs for NP

𝑎 𝑏

𝑐

𝑑𝑒

𝑓
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𝑓

𝑥′, 𝑦′

21

ZK Simulator: guess Verifier’s 
challenge in advance, and rewind

if the guess was wrong.

2) Pick two random bits
3) Commit

1) Guess (𝑥, 𝑦)

If 𝑥, 𝑦 ≠ (𝑥′, 𝑦′)



ZKP MOOC

Zero Knowledge Proofs for NP

18

𝑃 𝑉

(𝑑, 𝑓)

21

If there are 𝑡 repetitions, over 2𝑡 possible challenges to guess from!

Would take exponential time. 

(𝑎, 𝑏)

20

(𝑏, 𝑐)

01
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Zero Knowledge Proofs for NP

19

𝑃 𝑉

(𝑑, 𝑓)

21

(𝑎, 𝑏)

20

(𝑏, 𝑐)

01

In fact, it turns out that this protocol really shouldn’t be ZK!

[DNRS99]: If you can do Fiat-Shamir for Π, then Π wasn’t malicious-verifier ZK.
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Interactive Zero-Knowledge Protocols

▪ No trusted setup allowed.
▪ Security against Malicious verifier hard to guarantee.

▪ Many lines of research devoted to understanding the 
feasibility of interactive ZK.

▪ How many communication rounds? [BKP18] suggests that 
you can do it in 3.

▪ How efficient can you make the prover? [IKOS07, …]

▪ Stronger forms of security: quantum attacks, concurrency

20
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Main Topics:
Fiat-Shamir and SNARGs

22
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Succinct Non-Interactive Arguments (SNARGs)

𝑉𝑃(𝑤)

• Completeness: if 𝑥 ∈ 𝐿, 𝑉 accepts honest 𝑃 with probability 1 − negl

• Computational Soundness: if 𝑥 ∉ 𝐿, for all efficient 𝑃∗, 𝑉 rejects w.p. 1 − negl

• Succinctness: proof has length poly 𝜆, log( 𝑥 + 𝑤 ) and verification is fast.

𝑥, crs

𝜋
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Succinct Non-Interactive Arguments (SNARGs)

𝑉𝑃(𝑤)

• Completeness: if 𝑥 ∈ 𝐿, 𝑉 accepts honest 𝑃 with probability 1 − negl

• Computational Soundness: if 𝑥 ∉ 𝐿, for all efficient 𝑃∗, 𝑉 rejects w.p. 1 − negl

• Succinctness: proof has length poly 𝜆, log( 𝑥 + 𝑤 ) and verification is fast.

𝑥, crs

𝜋

This class so far: constructions of SNARGs using IOPs and a random oracle.
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𝑷 𝑽

Interactive

𝛼

𝛽

𝛾

Hash Function ℎ

Non-Interactive

𝑷 𝑽
𝛼, 𝛽, 𝛾

The Fiat-Shamir Transform

Powerful, general proposal for removing interaction.

Compute
𝛽 = ℎ(𝛼)

If ℎ is modeled as a random oracle, securely compiles any constant-round public coin protocol.
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The Fiat-Shamir Transform

What does that mean?

If ℎ is modeled as a random oracle, securely compiles any constant-round public coin protocol.
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The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function ℎ:

27

“The best you can do is treat ℎ as a black box in your attack.”

𝑷∗

ℎ(⋅)

𝑽𝜋

Under such an assumption, ℎ(⋅) can be thought of as a random function.



ZKP MOOC

Fiat-Shamir in the ROM

28

𝑷∗

ℎ(⋅)

𝑽

Claim: Fiat-Shamir for constant-round protocols is secure in the ROM
Proof (3 message case): 

𝛼, 𝛽, 𝛾

𝛼 must come from one 
of the oracle queries
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Fiat-Shamir in the ROM
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𝑷∗

ℎ(⋅)

𝑽

Claim: Fiat-Shamir for constant-round protocols is secure in the ROM
Proof (3 message case): 

𝛼, 𝛽, 𝛾 𝑷∗ 𝑽𝛼 (ith query)

𝛽

𝛾

Sample 𝑖 ← [𝑄]
(number of queries)

ℎ(⋅)
𝑄 − 1 queries

𝛼 must come from one 
of the oracle queries
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Fiat-Shamir in the ROM

30

𝑷∗

ℎ(⋅)

𝑽

Claim: Fiat-Shamir for constant-round protocols is secure in the ROM
Proof (3 message case): 

𝛼, 𝛽, 𝛾 𝑷∗ 𝑽𝛼 (ith query)

𝛽

𝛾

Sample 𝑖 ← [𝑄]
(number of queries)

ℎ(⋅)
𝑄 − 1 queries

𝛼 must come from one 
of the oracle queries

1/𝑄 security loss
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The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function ℎ:

31

“The best you can do is treat ℎ as a black box in your attack.”

𝑷∗

ℎ(⋅)

𝑽𝜋

Under such an assumption, ℎ(⋅) can be thought of as a random function.
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The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function ℎ:

32

“The best you can do is treat ℎ as a black box in your attack.”

𝑷∗

ℎ(⋅)

𝑽𝜋

In practice, ℎ(⋅) is instantiated with (e.g.) SHA256, possibly salted.
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The Random Oracle Model [BR93]

Assumption about the structure of an attack on a hash function ℎ:

33

“The best you can do is treat ℎ as a black box in your attack.”

𝑷∗

ℎ(⋅)

𝑽𝜋

No matter what, ℎ(⋅) is instantiated with a public efficient algorithm.
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Obvious (theoretical) problem:

Public efficient algorithms can’t 
compute random functions

34
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Next: example of an uninstantiable
random oracle property [CGH98]

35
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Random Oracles Do Not Exist

Fix a function 𝑓: {0,1}∗ → {0,1}𝜆

We say that a hash function ℎ is Correlation Intractable (CI) 
for 𝑓 if it is hard to find 𝑥 such that ℎ 𝑥 = 𝑓 𝑥

∀ PPT 𝐴,

Pr
ℎ←𝐻

𝑥←𝐴(ℎ)

ℎ 𝑥 = 𝑓(𝑥) = negl

36
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Random Oracles Do Not Exist

For any fixed 𝑓, a RO is CI for 𝑓.

Why? Each query 𝑥 to the RO produces a random output 

𝑦, which is equal to 𝑓(𝑥) with probability 2−𝜆. 

37
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Random Oracles Do Not Exist

Claim [CGH98]: ∃𝑓 such that for any (efficient) hash 
family 𝐻, 𝐻 fails to be CI for 𝑓!

38
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𝑓 𝑥 : interpret 𝑥 as a program 𝑃 and output 𝑃 𝑥 .
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Random Oracles Do Not Exist

Claim [CGH98]: ∃𝑓 such that for any (efficient) hash 
family 𝐻, 𝐻 fails to be CI for 𝑓!

𝑓 𝑥 : interpret 𝑥 as a program 𝑃 and output 𝑃 𝑥 .

Given ℎ ← 𝐻, attack sets 𝑥 = ⟨ℎ⟩ to be a description of ℎ. Then,

𝑓 𝑥 = 𝑃 𝑥 = 𝑃 ℎ = ℎ ℎ = ℎ 𝑥 . 

40
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Random Oracles Do Not Exist

Is this a reasonable counterexample?
▪ Hash function/random oracle must be able to hash inputs 

of arbitrary length. CI with bounded inputs might exist!

41
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▪ [Barak01,GK03] apply to fixed-input length hash functions. 
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Random Oracles Do Not Exist

Is this a reasonable counterexample?
▪ Hash function/random oracle must be able to hash inputs 

of arbitrary length. CI with bounded inputs might exist!

▪ [Barak01,GK03] apply to fixed-input length hash functions. 

Theorem [Barak ‘01, Goldwasser-Kalai ‘03]: ∃ interactive 
protocol Π such that ΠFS is ROM-secure but insecure for 
any efficiently computable H (e.g. SHA-3).

43
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Random Oracles Do Not Exist

Is this a reasonable counterexample?
▪ Hash function/random oracle must be able to hash inputs 

of arbitrary length. CI with bounded inputs might exist!

▪ [Barak01,GK03] apply to fixed-input length hash functions.

▪ Security property broken by running the hash function on 
its own description. Is this practically relevant?
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Random Oracles Do Not Exist

Is this a reasonable counterexample?
▪ Hash function/random oracle must be able to hash inputs 

of arbitrary length. CI with bounded inputs might exist!

▪ [Barak01,GK03] apply to fixed-input length hash functions.

▪ Security property broken by running the hash function on 
its own description. Is this practically relevant?

▪ Recursive SNARKs do something of this flavor.

45
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Random Oracles Do Not Exist

Is this a reasonable counterexample?
▪ Hash function/random oracle must be able to hash inputs 

of arbitrary length. CI with bounded inputs might exist!

▪ [Barak01,GK03] apply to fixed-input length hash functions.

▪ Does NOT imply RO-based SNARKs are broken in practice.

▪ But it does imply a lack of theoretical understanding.

46
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What can we do without 
random oracles?

47
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Falsifiable Assumptions

Prove security assuming that some concrete algorithmic task is 
infeasible:

▪ Computing discrete logarithms is hard.

▪ Solving random noisy linear equations (LWE) is hard.

▪ SHA256 is collision-resistant.

48
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Falsifiable Assumptions

Many cryptographic constructions use random oracles to get 
better efficiency, but can be based on falsifiable assumptions.

▪ CCA-secure public key encryption.

▪ Identity-based encryption.

▪ Non-interactive zero knowledge.

49
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Falsifiable Assumptions

Can (ZK-)SNARKs for NP be built based on falsifiable assumptions?

▪ (minor caveats but) No!

▪ No way to extract a long witness from a short proof. Need 
assumption (RO, “knowledge assumption”) that guarantees 
adversary “knows” a long string given a short commitment.

50
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Falsifiable Assumptions

Can (ZK-)SNARGs for NP be built based on falsifiable assumptions?

▪ It’s complicated. (We don’t know)

▪ Significant barriers [Gentry-Wichs ‘11]

▪ The community is still trying to understand this.

51
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Rest of today: SNARGs for 
limited computations from 
falsifiable assumptions (LWE)

52
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Two tools/techniques

▪ Correlation-intractable hash functions [CCHLRRW19,PS19,HLR21]

▪ Used to instantiate Fiat-Shamir without random oracles, for 
“nice enough” interactive protocols.

▪ Somewhere extractable commitments [HW15] 
▪ Used to make a “nice enough” interactive protocol

▪ Special variant of the typical IOP-based approach.

53
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Correlation Intractability

A hash family 𝐻 is CI for 𝑓 if ∀ PPT 𝐴,

Pr
ℎ←𝐻

𝑥←𝐴(ℎ)

ℎ 𝑥 = 𝑓(𝑥) = negl

54
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Correlation Intractability

A hash family 𝐻 is CI for binary relation 𝑅 if ∀ PPT 𝐴,

Pr
ℎ←𝐻

𝑥←𝐴(ℎ)

𝑥, ℎ 𝑥 ∈ 𝑅 = negl

55
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Correlation Intractability

A hash family 𝐻 is CI for 𝑓 if ∀ PPT 𝐴,

Pr
ℎ←𝐻

𝑥←𝐴(ℎ)

ℎ 𝑥 = 𝑓(𝑥) = negl

56

▪ Weren’t these impossible to build?
▪ Restrict to fixed input length (necessary)

▪ Restrict to fixed running time on 𝑓 (unclear if necessary)
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CI Construction

Here’s a simple construction [CLW18] using Fully 
Homomorphic Encryption (FHE)

57

𝑥
pk pk, 𝑓

𝑓(𝑥)
sk

𝑓(𝑥)𝑥



ZKP MOOC

CI Construction

58

Real hash key: 𝑔 ≡ 0 (or a uniform random string – nobody can tell)

ℎ = (pk, Enc 𝑔 )

ℎ 𝑥 = Eval 𝑥, Enc 𝑔 = Enc 𝑔(𝑥)

Key point: 𝑔 is hidden to everyone! We consider different 𝑔 to prove security.
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Security Analysis

59

ℎ 𝑥 = Eval 𝑥, Enc 𝑔∗ = Enc 𝑔∗(𝑥)

Suppose an attacker, given ⟨ℎ⟩, finds 𝑥 such that ℎ 𝑥 = 𝑓(𝑥). 

Dec 𝑓 𝑥 = Dec ℎ 𝑥 = 𝑔∗ 𝑥 = Dec 𝑓 𝑥 + 1. Impossible!

Key idea: let 𝑔∗ 𝑥 = Dec 𝑓 𝑥 + 1. We know that Enc 𝑔) ≈ Enc(𝑔∗ if 

the encryption scheme is (circular-)secure.
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Correlation Intractability: what we know

𝐻 is CI for 𝑅 if ∀ PPT 𝐴, Pr
ℎ←𝐻

𝑥←𝐴(ℎ)

𝑥, ℎ 𝑥 ∈ 𝑅 = negl

60

▪ Constructions for efficiently computable functions:

▪ From LWE ([CLW18,PS19,LV22])

▪ From DDH (JJ21)

▪ Construction [HLR21] for (efficient) relations with “product structure”
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How do we use CI to instantiate 
Fiat-Shamir?

61
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𝑷 𝑽𝛼

𝛽

𝛾

Hash Function ℎ
𝑷 𝑽

𝛼, 𝛽, 𝛾

Avoid the “Bad Challenges”

Compute

𝛽 = ℎ(𝛼)

Def: Given false claim 𝑥 and a first message 𝛼, a challenge 𝛽 is “bad” if 

there exists a prover message 𝛾 making 𝑉 accept.

We want to say: if the (3 message) interactive protocol is sound, then (for 

all 𝑥, 𝛼) most 𝛽 are not bad. True for statistically sound IPs.
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𝑷 𝑽𝛼

𝛽

𝛾

Hash Function ℎ
𝑷 𝑽

𝛼, 𝛽, 𝛾

Avoid the “Bad Challenges”

Compute

𝛽 = ℎ(𝛼)

Exactly what CI is good for! Define relation 𝑅𝑥 = { 𝛼, 𝛽 : 𝛽 is bad}. Then if ℎ
is CI for 𝑅𝑥 (when 𝑥 ∉ 𝐿), ΠFS is sound using ℎ!

Protocols with more than 3 messages: round-by-round soundness (each 
round has a type of “bad challenge” to avoid). 
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𝑷 𝑽𝛼

𝛽

𝛾

Hash Function ℎ
𝑷 𝑽

𝛼, 𝛽, 𝛾

Avoid the “Bad Challenges”

Compute

𝛽 = ℎ(𝛼)

Main challenges: 

1) Sometimes our IP doesn’t have statistical soundness.

2) We can only build CI for relations 𝑅 that can be decided efficiently.
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Important example: 
SNARGs via IOPs (PCPs)

65
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𝑃(𝑥,𝑤) 𝑉(𝑥)

Com(𝜋)

𝑟 (describes location set 𝑆) 

Open 𝜋𝑆

SNARGs from PCPs [Kilian, Micali]

Verify opening, check 
consistency of 𝜋𝑆

Compute (long) proof 
string 𝜋 from (𝑥, 𝑤)

𝑟 ← {0,1}𝜆

Candidate SNARG: apply Fiat-Shamir to this protocol!

Simplified (less efficient) version of modern SNARKs you’ve learned about.
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𝑃(𝑥,𝑤) 𝑉(𝑥)

Com(𝜋)

𝑟 (describes location set 𝑆) 

Open 𝜋𝑆

SNARGs from PCPs [Kilian, Micali]

Verify opening, check 
consistency of 𝜋𝑆

Compute (long) proof 
string 𝜋 from (𝑥, 𝑤)

𝑟 ← {0,1}𝜆

Not statistically sound, so it’s not clear 
how to analyze FS without random oracles. 
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SNARGs for Batch NP

• Completeness: if 𝑥𝑖 ∈ 𝐿 for all 𝑖, 𝑉 accepts honest 𝑃

• Computational Soundness: if 𝑥𝑖 ∉ 𝐿 for some 𝑖, for all efficient 𝑃∗, 𝑉 rejects.

• Succinctness: proof has length poly 𝜆, 𝑤 , log 𝑘

𝜋

Surprisingly powerful (implies SNARGs for P, etc.)

𝑃 𝑥1, … , 𝑥𝑘 , 𝑤1, … , 𝑤𝑘 𝑉(𝑥1, … , 𝑥𝑘)
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𝑃 𝑥1, … , 𝑥𝑘 , 𝑤1, … , 𝑤𝑘 𝑉(𝑥1, … , 𝑥𝑘)

Com(𝜋1, … , 𝜋𝑘)

𝑟 (describes location set 𝑆) 

Open 𝜋1,𝑆, … 𝜋𝑘,𝑆

Interactive Batch Arguments from PCPs [CJJ21]

Verify opening, check 
consistency of 𝜋𝑆

𝑟 ← {0,1}𝜆
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𝑃 𝑥1, … , 𝑥𝑘 , 𝑤1, … , 𝑤𝑘 𝑉(𝑥1, … , 𝑥𝑘)

Com(𝜋1, … , 𝜋𝑘)

𝑟 (describes location set 𝑆) 

Open 𝜋1,𝑆, … 𝜋𝑘,𝑆

Interactive Batch Arguments from PCPs [CJJ21]

Verify opening, check 
consistency of 𝜋𝑆

𝑟 ← {0,1}𝜆

Choose Com to be statistically binding on one out of 𝑘 proofs (𝜋1)

If 𝑥𝑖 is false, protocol is now statistically sound! (𝜋1 is fixed)
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SSB Commitments

M Y

m1=H(M, Y)

V E

m2 = H(V, E)

C T

m3 =H(C, T)

O R

m4 =H(O, R)

k1=H(h1, h2)

h1=H(m1, m2) h2=H(m3, m4)
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SSB Commitments

M Y

m1=H(M, Y)

V E

m2 = H(V, E)

C T

m3 =H(C, T)

O R

m4 =H(O, R)

k1=H(h1, h2)

h1=H(m1, m2) h2=H(m3, m4)
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(secretly 
encodes V)

𝐻 = 𝐻3 (binding 

on 3rd location)
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SSB Commitments

M Y

m1=H(M, Y)

V E

m2 = H(V, E)

C T

m3 =H(C, T)

O R

m4 =H(O, R)

k1=H(h1, h2)

h1=H(m1, m2) h2=H(m3, m4)
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(secretly 
encodes V)

𝐻 = 𝐻3 (binding 

on 3rd location)

𝐻1 ≈𝑐 𝐻2 ≈𝑐 … ≈𝑐 𝐻𝑛
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𝑃 𝑥1, … , 𝑥𝑘 , 𝑤1, … , 𝑤𝑘 𝑉(𝑥1, … , 𝑥𝑘)

Com(𝜋1, … , 𝜋𝑘)

𝑟 (describes location set 𝑆) 

Open 𝜋1,𝑆, … 𝜋𝑘,𝑆

Interactive Batch Arguments from PCPs [CJJ21]

Verify opening, check 
consistency of 𝜋𝑆

𝑟 ← {0,1}𝜆

Choose Com to be statistically binding on one out of 𝑘 proofs (𝜋1)

If 𝑥𝑖 is false, protocol is now statistically sound! (𝜋1 is fixed)
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𝑃 𝑥1, … , 𝑥𝑘 , 𝑤1, … , 𝑤𝑘 𝑉(𝑥1, … , 𝑥𝑘)

Com(𝜋1, … , 𝜋𝑘)

𝑟 (describes location set 𝑆) 

Open 𝜋1,𝑆, … 𝜋𝑘,𝑆

Interactive Batch Arguments from PCPs [CJJ21]

Verify opening, check 
consistency of 𝜋𝑆

𝑟 ← {0,1}𝜆

Choose Com to be statistically binding on one out of 𝑘 proofs (𝜋𝑘)

If 𝑥𝑖 is false, protocol is now statistically sound! (𝜋𝑘 is fixed)
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𝑃 𝑥1, … , 𝑥𝑘 , 𝑤1, … , 𝑤𝑘 𝑉(𝑥1, … , 𝑥𝑘)

Com(𝜋1, … , 𝜋𝑘)

𝑟 (describes location set 𝑆) 

Open 𝜋1,𝑆, … 𝜋𝑘,𝑆

Batch Arguments from PCPs [CJJ21]

Verify opening, check 
consistency of 𝜋𝑆

𝑟 ← {0,1}𝜆

With some work, can use CI hash functions to compile this protocol. 

Succinctness: 𝑤 ⋅ 𝜆 + 𝑘 ⋅ 𝜆, but can be reduced to 𝑤 ⋅ 𝜆 by recursing.
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Summary of Fiat-Shamir without RO

▪ Use hash functions that are CI for appropriate 
functions/relations
▪ [CCHLRRW19,PS19,BKM20,JJ21,HLR21]

▪ Carefully show that FS-soundness for protocols of 
interest follows from compatible forms of CI

▪ [CCHLRRW19]: (non-succinct) NIZK

▪ [JKKZ21]: non-interactive sumcheck protocol

▪ [CJJ21]: batch NP arguments
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Summary of Fiat-Shamir without RO

Open problems:

▪ Characterize which protocols can be FS-compiled (we 
know it doesn’t work in general [Bar01, GK03])

▪ SNARGs for NP from falsifiable assumptions?
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END OF LECTURE
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