Zero Knowledge Proofs

Recursive SNARKSs

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

Q) Berkeley igsgrrome I

= UNIVERSITY OF CALIFORNIA

> Stanford

¥ University

Recall: SNARK algorithms

A preprocessing SNARK is a triple (S, P, V):

= S(C) — public parameters (pp, vp) for prover and verifier
" P(pp, x, w) = proof @

= V(vp, x, ™) —> accept or reject

ZKP MOOC

SNARK types

In the last few lectures, we saw several SNARKs:

= Groth16, Plonk-KZG:

= short proofs, but prover time is O(nlogn)

" FRI-based proofs (as well as Breakdown, Orion, Orion+, ...):

= faster prover, but longer proofs

ZKP MOOC

Two level SNARK recursion:
roving knowledge of a proof

public: x public: vp, x
witness: w | | proves Pknows ws.t. | | witness: T
G0 l proves P’ knows 7 s.t.

l V(vp, x,m) = yes
SNARK SNARK w
Pl
prover P X prover ,
a - —TC

(s, P, V")

Use V'(vp’, x, ') to verify final proof m’

ZKP MOOC

Application 1: proof compression

public: x
withess: w

1

SNARK
prover P

=

fast prover & verifier, but
outputs a 100KB proof

m—) 77—

(S,P,V)

public: vp, x
witness: T
l slower prover,
1KB final proof

prove P \/
gy — T

(s, P, V")

= fast overall prover, and final proof is short
(used to prove complex statements)

ZKP MOOC

Why is this sound?
fixa circuit C:F"* X F™ —» F

Recall: a SNARK (S,PV) is knowledge sound for C if (simplified):

for every poly-time prover A there is a poly-time extractor E s.t.

for all statementsy € F" : [knowledgw

PriC(y,w) = 0:w < E(pp,y)] 2 Pr[V(vp,y,A(pp,y)) =ves] — ¢
\ Y J 1 Y [l \)
Prob. E extract a Prob. adv. 4 outputs a negl

valid witness fory convincing proof for y

ZKP MOOC

Why is this sound?

fixacircuit C:F* X F™ = [F andlet (pp,vp) < S(C).

Goal: prove that a 2-level recursive SNARK is knowledge sound for C

= et C'((vp,x), ™) be the circuit [V(vp, x, m) == ‘yes’]

"= Let A be a convincing prover for (S’,P’V’) with respect to C’

We need to build an extractor that outputs w € F" s.t. C(x,w) =0

ZKP MOOC

Why is this sound?

= let C’((vp,x), ™) be the circuit [V(vp, x,) == ‘yes’]

" Let A be a convincing prover for (S’,P’V’) with respect to C’

For a given x € F™ and vp, our extractor does: E’ is a convincing
prover for (S,PV) for C.

= step1l: (S,P’V’)is knowledge sound for ¢’ =
there is an extractor E' that extracts a withess m from A4 s.t. V(vp, x,) = ‘yes’

= step 2: (S,PV)is knowledge sound for C =
there is an extractor E that extracts a witness w from E’ s.t. C(x,w) =0

ZKP MOOC

Why is this sound?

Success probability: let w be the extracted witness

Pr{C(x,w) = 0] = Pr[n’ « A(pp, x) is a convincing proof] — &' — &

Prob. E’ outputs a valid

Caution: Prob. E outputs a valid w

Suppose time(E’) =2 x time(4), time(E) =2 xtime(E’) = time(E) =4 x time(A)

= for n-level recursion time(E(™) = 2" x time(A), not poly-time!

= can only prove security of recursion of depth log(security parameter A1)

ZKP MOOC

Another difficulty: random oracles

Recall: the Fiat-Shamir transform results in a SNARK (S,P,V)
where the P and V circuits query a random oracle (RO).

During recursion, how does prover process the verifier’s RO gates?

Answer:
= |nstantiate the verifier’s RO with a concrete hash function H
* Then assume that the resulting (S",PH,V1) is still secure

= Now we can recurse (but security proof requires an ugly assumption)

ZKP MOOC

Application 2: streaming proof generation

A typical prover (e.g., for zk-Rollup):

= Collect statements (x{,wq), ..., (x,;,, w,,) from the public (e.g., Tx)
= Prove a conjunction: C(x{,wy) =+ =C(x,,,w,,) =0

The problem: need all n statements before can begin to build proof

Can we generate the proof in a streaming fashion?
= Goal: begin to generate proof as soon as (x;, wy) is available

ZKP MOOC

Streaming proof generation: zk-Rollups

Naively, can only generate state transition proof

once all 100 Tx are submitted. /’ /[

g
start of SelusiEeE Post
o e
100 Tx B to L1
\ J
Tx1, ..., Tx10 Tx11, ..., Tx20 | === | TX91, ..., TX100 !
long delay

ZKP MOOC

Streaming proof generation: zk-Rollups

Much faster than starting to generate

entire proof m after receiving Tx100.

—

A,/ generate

— proof of

/\ proofs

=

start of g - - Post
batch of 8ene;ate J 8*:25;8;6 J gfonoir;te J batch
100 Tx _proot | PTOO1 72 PTOOT %10 to L1
| J
Tx1, ..., Tx10 Tx11, ..., Tx20 | === | TX91, ..., TX100 !

much shorter delay

ZKP MOOC

Application 3: Layer-3 zk-Rollups

First, a very brief review of Rollups

Rollup state (L2)

Rollup contract on layer-1
holds assets of all Rollup users, | Alice (on L2): Bob (on L2):
and Merkle root of layer-2 4 ETH, 1 DAl 3 ETH, 2DAIl

Alice: Bob: Rollup contract: Merkle state root
10ETH 17 DA assets: 7 ETH, 3 DA, ...

Layer-1 blockchain (L1)

ZKP MOOC

Transfers inside Rollup are easy

Rollup state (L2)

[A—=B: 2 ETH], Siga . | Alice (on L2): Bob (on L2):
(along with hundreds of Tx) 4 ETH, 1 DAI 3 ETH, 2 DAI
Alice: Bob: Rollup contract: Merkle state root
10 ETH 17 DA assets: 7 ETH, 3 DAI, ...

Layer-1 blockchain (L1)

ZKP MOOC

Transfers inside Rollup are easy

State transition proof 1t: proves that Tx batch is valid and that new root is correct

[A—=B: 2ETH], sigs , | Alice (on L2): Bob (on L2):
(along with hundreds of Tx) 2 ETH, 1 DAI 5 ETH, 2 DAI

lupdated state root, proof 1T

Alice: Bob: Rollup contract: updated state root
10 ETH 17 DAl assets: 7 ETH, 3 DA, ...

note: no assets move on the L1 Layer-1 blockchain (L1)

ZKP MOOC

Transferring funds to and from Rollup

Alice sends funds to Rollup:
= Alice sends funds from her L1 address to the Rollup contract

= Rollup coordinator sends updated state root to L1 contract
to record Alice’s new balance

Alice withdraws funds from Rollup:
= Alice requests L1 Rollup contract to send her funds to an L1 address
= Rollup coordinator sends updated state root to L1 contract

= Much more expensive than in-Rollup transfers

ZKP MOOC

Running a dApps in a Rollup

Rollup coordinator computes updated state root, and state transition proof

exchange 4 ETH for DAl &
Alice: Bob: dApp: L2 Rollup
L2-state, L2-state, L2-state (e.g., ZKEVM)

proof of correct execution,
new state root

L2 Rollup contract:
state root, assets

Alice: state, | Bob: state,

Layer-1 blockchain (L1

Running a dApps in a Rollup

Rollup coordinator computes updated state root, and proof

State transition proof proves that:

 Tx from Alice is valid (properly signed and she has sufficient balance)

* new state root reflects the correct execution of dApp EVM code on L2
... a complex statement to prove

new state root

=
: L2 Rollup contract:
Alice: state, || Bob: state, - F;oot sssets IR

Layer-1 blockchain (L1

One Rollup contract can support many L2’s

Rollups run by different orgs: all must use the same rules for updating state root
= same execution engine (e.g., EVM) for all L2 dApps

L2 Rollup -- org [0] L2 Rollup -- org [1] L2 Rollup -- org [2]

root[0], root[1], root[2]
Alice: state, | Bob: stateg holds assets of all Rollups
L2 Rollup contract

Layer-1 blockchain (L1

Layer-3 zk-Rollup

A gaming company runs an L2 Rollup:
= Wants a custom execution engine optimized for its games
= \Wants a faster settlement rate than L2 — L1 settlement rate

What to do?
" Run an L3 on top of its L2

= requires recursive state transition proofs

ZKP MOOC

Layer-3 zk-Rollup

Alice (on L3): L3state Bob (on L3): L3state s

state root of L3, assets of L3
L3 Rollup contract (fancy EVM)

root[0], root[1], root[2]
holds assets of all Rollups
L2 Rollup contract (EVM)

Alice: state, || Bob: state,

Layer-1 blockchain (L1

L3 Rollup
(Game)

L2 Rollup
(Gaming Co)

Layer-3 zk-Rollup

Alice on L3: [send an NFT to a dApp L3], sigy (dApp uses fancy EVM code)

Every second: L3 coordinator = L2 coordinator:
new L3 state root and state transition proof 15
= |2 Rollup contract: check proof and record updated L3 state root

Every minute: L2 coordinator has 60 proofs from L3 coordinator

= Construct a single recursive proof 1T, that all 60 proofs from L3 are valid
= |2 coordinator = L1 contract: latest L2 state root and the proof m,

= L1 contract: check proof 1, and record updated L2 state root

ZKP MOOC

Application 4:
Incrementally Verifiable Computation (IVC) [valiantos)

Consider a long computation done by iterating a function F:

witnesses —4— w; W, W,y Deep_"l':ught
_——
So | F |_states; | F S2_______Sn—1 F Sn ‘
init state] final output

Goal: succinct proof that prover has wy, ..., w, s.t. final output s,, is correct

The verifier has F and public values: n, sg, s,

ZKP MOOC

https://iacr.org/archive/tcc2008/49480001/49480001.pdf

IVC: construction [Valiant’08]

High level idea (informal):

e every step outputs a proof that the computation is correct to this point

* Specifically, fori = 1,...,n, atstep i prover outputs s; and a proof m;
that proves prover has a witness (s;_1, W;, m;_1) such that:

F(Si—l’ wi) = 5 and V(Up, (i'lr S0 Si—l)r T[i—l) = yées

= final proof m,, is a succinct proof that
prover has w;, ..., W, s.t. final output s, is correct

ZKP MOOC

The statement at step numberi > o

Wi

yes/no

statement
_ |] (Up» n, So, Sn)
(vp, i-1, sy, Si_l): (vp, i, So, Si) | l
proof m;—; proof ; Verifier
Prover P

| know a witness (s;_q, w;, ;4) for the statement (vp, i, sg, S;) such that:

F(si_q,w;)=s; and V(vp,(i-1, Sy, S;_1), T;_1) = yes

ZKP MOOC

Applications of IVC

1. Break along computation into a sequence of small steps
F: one microprocessor step (Risc5, EVM, ...)

Prover needs far less memory per step compared to a monolithic proof

Wq 05 Wn
So | F |_states; | F S Sn-1 F Sn ‘
init state] final output

ZKP MOOC

Applications of IVC

2. Asuccinct proof that current state of blockchain is correct

So: initial state of chain, s,,: current state of chain

w1, ..., Wy, blocks of valid transactions

Used in Mina blockchain = verify state of chain by checking one recursive proof

3. Verifiable Delay Functions (VDF): succinct proof that s, is equal to H™) (So)

S S S3 Spn—>2 Sn—1 Sn

So— | H » H » H ——> - » H » H —————

ZKP MOOC

Application 5: a market for ZK provers

market

i

selects provers
and distributes rewards

ZKP MOOC

Choosing Curves to
Support Recursion

ZKP MOOC

Two level SNARK recursion:
roving knowledge of a proof

public: x public: vp, x
withess: w proves P knows w s.t. withess: Tt

1

Clx,w) =0 l proves P’ knows 7 s.t.
V(vp, x,m) = yes

SNARK N SNARK w
prover P X prover P’ ,
3) |] — 2) 7T

(S,P,V) (s’ P, V"

[inner proof/m fJo@roof system |

Review

Fix a circuit C: [Fg X [Fpm — [F,, and a statement x € IF’I}.

= To prove “l know w s.t. C(x,w) = 0” we use commitments to polys. in [F, [X]

= Prover commits to a polynomial that encodes the computation trace

= To commit to a polynomial f € IF,,[X] using KZG:
" needagroup G oforderp; aKZGcommitmentis asingle elementin G

How is the group (@ represented?

ZKP MOOC

Algebraic Groups

We say that G is an algebraic group defined over F, if G < IFfI and

" the group operation can be computed by polynomials over IF,:
there are polynomials (f3, ..., fp) € F, [X?] such that
forall a,b € G we havethat a+ b = (fi(a,b), ..., fz(a,b)) € G

= there is an efficient algorithm that test if a, b € G satisfy a = b.

Example: G is the group of points of an elliptic curve defined over F, (G < IFE’I)
" The group has some order p (which is close to q)

ZKP MOOC

Recursive proofs: the arithmetic problem

Let G be an algebraic group of order p, defined over [F,

= The prover supports circuits over IF,,, but verifier needs IF, for group ops.

| can do proofs for]

That’s great, but | need
circuits over [F,

arithmetic over [,

Verifier circuit does
group operations in G
= arithmetic in [Fq

ZKP MOOC

What to do?

Option 1: field emulation ex: a pairing circuit
= Implement arithmetic in [F, as a circuit over [F,, (as in KZG eval) is huge

" The problem: blows up the size of verifier circuit = slow prover.

Option 2: find an algebraic group G of order p, defined over I,
" Now both the prover and verifier use arithmeticin I, V
" The bad news: the universe doesn’t want us to have that ...

= the discrete log problem is always easy in such groups

ZKP MOOC

Solution: a chain of groups

ldea: find groups G and G, such that
" G4 hasorder p, and is defined over [

* (@, has order g, and is defined over [,

4

Gil=p | & [Fq

|Gzl =q | € IF;).

ZKP MOOC

N
=

|G| =p

Solution: a chain of groups

|G;| = q

N
=

Now, to do a two-level recursion:

" |Inner proof system (S, P, V) uses poly. commitments in G4
= Prover P supports circuits over IF,, Verifier needs arithmetic i

= Quter proof system (S, P/, V') uses poly. co
= Prover P’ supports circuits over [F & verifier needs arithmetic in IF,.

A longer chain of groups supports more levels of recursion

ZKP MOOC

Even better: a cycles of groups (scrvi4

Find groups G and G, such that
" G4 hasorder p, and is defined over [

" G has order g, and is defined over IF,,

|G| =p | C© IF; enables longer recursion
by jumping back and forth
IF;; D ||G,| =g between two proof systems

ZKP MOOC

https://eprint.iacr.org/2014/595.pdf

Recursion using a cycle [scrvig
public: x public: x, vk public: x, vk’
withess: w witnhess: 14 witness: 1,
prover P) prover P’ T, prover P s p’
prove: > prove: prove: ::> coe
Clx,w)=0 V(vk,x,m) =1 V'(vk',x,m,) =1
A\ A\
. N\ N\
C uses arithmetic in [F,, V uses arithmetic in [F, V' uses arithmetic in |
Prover P uses G; € F, | | Prover P'uses G, € F, Prover P uses G; € [F,

ZKP MOOC

https://eprint.iacr.org/2014/595.pdf

Three types of cycles of length two

Both G; and G, are “pairing” groups (both support KZG)
= the bad news: best constructions result in inefficient groups

(4 is a pairing group, but G, is a regular group
" use KZG in G4 and a non-pairing PCS in G, (e.g., bulletproofs)

Neither group is a pairing group: use a non-pairing PCS in both
"= The pasta curves: pallas and vesta (next slide)

ZKP MOOC

A large family of cycles of type-3

Let E/Q betheellipticcurve: y?=x3+4+d (forsomed)

For “many” primes q, ifp = |E([Fq)| is a prime then

[E(Fy)| =q and |E(Fg)|=p

Pastauses d = 5 and both curves are convenient for recursion

" Developed for Halo2
Silverman, Stange 2009: Corollary 22

ZKP MOOC

https://arxiv.org/pdf/0912.1831.pdf

Efficient Recursion

via Statement Folding:
Nova, Supernova, and generalizations

eprint.iacr.org/2021/370.pdf

(see also eprint.iacr.org/2020/1618.pdf)

ZKP MOOC

The difficulty with full recursion

" Prover P needs to build a proof for a circuit C that
runs the entire verification algorithm V (vk, x,).
= Expensive: V needs to verify eval. proofs for a poly. commitment

" Halo: takes eval proof verification out of C = simpler C

= Nova: takes (almost) all verification checks out of C
= even simpler C

ZKP MOOC

https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2021/370

A folding scheme: compress two instances into one

Let C: [Fg X IF’p” — [F,, be a circuit

A folding scheme for C is a protocol between two parties:

(%1, w1)
(Xz, WZ)

Complete: if C(x;,w;) =C(xy,w,) =0 then C(x,w) =0

T
Folding
Prover r < R
(x,w)

Folding
Verifier

1

X

Knowledge sound: VP* 3E s.t. V x{, x,: P* outputs valid w for x = E outputs valid wy, w,

ZKP MOOC

A folding scheme: compress two instances into one

Let C: [Fg X IF’p” — [F,, be a circuit

A folding scheme for C is a protocol between two parties:

_ T
(1, w1) __.| Folding
(2, w2) Prover Verifier of (x, w) must be convinced
1 that 7 was computed correctly
(x, w)

Ve
To make Folding Prover non-interactive, use Fiat-Shamir:

(i) < H(xq,x,,T), (ii) output (x,w)

ZKP MOOC

Recall: every circuit can be represented as a
rank-1 constraint system (R1CS)

A,B,D € F¥*v

. F" x F™
¢ IFp Fp ~ IFp simple

(circuit C) translation (R1CS program)

(x,w") € FR+t™M > z=(x,w) € F¥%
P simple P

st. C(x,w) =0 translation s.t. (Az2) 0‘(BZ) = Dz

\
(x1,%2) © (y1,¥2) = (X1¥1,X2Y2)

ZKP MOOC

(valid statement,witness pair)

A folding scheme for R1CS

A folding scheme: compress two instances into one

Example: fix an R1CS program A,B,D € F;*"
= instance 1: publicx; € F), witness z; = (xq,w;) € F}

" instance 2: publicx, € F}, witness z, = (xp,w;) € IF}

We know (Az;) o (Bz;) = Dz; for i=1,2

ZKP MOOC

Folding the two instances into one

Attempt 1: verifier chooses r « [F), andsets x « x; +71x,.

proversets z«—z;+1rz, =(x;1+7rx,, Wy +7 W)

Then:
(Az) o (Bz) = A(zy + 1 23) o B(z1 + 1 23) E € FY

= (Azy) © (Bzy) + 1r* (Azy) o (Bzy) H1r(Azy) o (Bzy) + 1(Azy) o (Bz,)

= DZl + T'ZDZZ + E
= not quite an R1CS witness: we want (Az) o (Bz) = Dz

ZKP MOOC

Let’s try again: relaxed R1CS

Relaxed R1CS instance: A,B,D € F;*Y, (x €F}, c €F,, E €F})
Witness: z = (x,w) € Fy st. (Az) o (Bz) =c(Dz) +E

Now, again, fix a relaxed R1CS program A,B,D € IF’I;‘X”
= instance 1: public (xq,cq,Ey), witness z; = (xy,w;) € Fj
= instance 2: public (x;,c;,E;), witness z; = (x,w,) € Fj

We know (Az;) o (Bz;) = c;(Dz;) + E; for i =1,2

ZKP MOOC

Folding the two relaxed R1CS instances into one

Attempt 2: step 1: Prover computes and send to V:
I« l(AZZ) o (Bzy) + (Azy) o (Bzy) — ¢1(Dz;) — ¢, (DZ1)'

I

(cross terms)

step 2: verifier chooses r <« [F,,, sends r to P, and sets

pl
xe— x1+rx,, cec+rc,, E<E +1rT+7r%E,

step 3:proversets z«—z;+rz, =(x1 +7x, Wy +7 W)

ZKP MOOC

Why this is correct

(Az) o (Bz) =

= (Azy) o (Bzy) + 1r* (Az,) o (Bz,) H1r(Azy) o (Bzy) + 1(Azy) o (Bz,)

= Gz) ¥ E; + 72c,(Dz,) + 2B + 1([(Azy) o (Bzy) + (Azy) o (Bzy)]

= (Cl‘l'TCZ)(DZl + T'DZZ) +|E1 + TZEZ + TT'

= ¢(Dz) +E E

= So, w is avalid witness for the relaxed R1CS instance (x, ¢, E)

ZKP MOOC

Why is this knowledge sound? (informal)

For every folding prover P*, there is an extractor E s.t.
for all instances (x4, ¢y, E1) and (x5, ¢y, E>),
if folding verifier outputs (x, ¢, E) and P* outputs a valid w,

=

w.h.p, E extracts from P* valid witnesses wy, w, for the two instances

[note: also need to commit to w in the instance]
eprint.iacr.org/2021/370.pdf (lemma 4)

ZKP MOOC

Not good enough

In a relaxed R1CS the verifier has (x,c,E) ; prover has z.
" The problem: E can belarge (much larger than x)

Solution: committed relaxed R1CS

= Verifier has (x, ¢, commit(E,rg)) ; proverhas (z E, 1g)

||
short commitment to E

= Commitment needs to be “additive” to enable folding

ZKP MOOC

Recall: homomorphic commitment scheme

Two algorithms:
" commit(m, 1;,,) = com meM, r,, <R, comeC

» verify(m, com, r;,,) = accept or reject

Properties: (informal)
" binding: cannot produce com and two valid openings for com

" hiding: com reveals nothing about committed data

ZKP MOOC

Recall: homomorphic commitment scheme

Suppose M =TF", R =TF, and Cisan additive group

" The commitment scheme is homomorphic if for all m{, m,,r{,75:

commit(mq, 1) + commit(m,, r,) = commit(m{ + m,, r; + 1)

" The commitment scheme is succinct if commitment size is 0;(1)

Many examples: Pedersen, lattice-based, ...

ZKP MOOC

Folding scheme for committed relaxed R1CS

Instance: A,B,D € F;*Y, (x €F}, c € F,, comg € [F})

Witness: (z,E,1g) st. (Az) o (Bz) = ¢(Dz) + E and comg = commit(E, %)

As usual, fix an R1CS program A,B,D € IF'I‘;X”
" instance 1: public (x1,¢;,comg,), witness (24, Eq,7g,)

= instance 2: ublic (x,,c,,comg.), witness (z,,E,,r
2, C2 E, 2, L2, TE,

ZKP MOOC

Folding scheme for committed relaxed R1CS

= Prover computes s

T « (Azp) o (Bzy) + (Azy) o (Bzy) — ¢;(Dz3) — ¢;(Dzy)

sends compr < commit(T,ry) to V.

homomorphic commitment

= Verifier chooses r < [F,, sends r toP, and sets / \

X< X +rx,, ce<ci+rcy, comE<—comE1+r-comT+r2-comE2

" Prover sets

z<z1+12;, EE+1T+1r%E,, 1ge1g +1r-10+71% 7%,

ZKP MOOC

Folding scheme for committed relaxed R1CS

= Prover computes

>€n nitment
. vor Thisis complete and knowledge sound
X omg,

= Proversets
z<z1+12;, EE+1T+1r°E,, 1ge1g +1r-104+71% 1%,

ZKP MOOC

Putting folding to use ...

@)
o
e}
=
a
I~
N

Putting folding to use ...

Let’s see how to build a very efficient IVC: Goal: proof that prover
knows w1, ..., W,
w1 W, Wp, such that s, is correct

l l l _V

SO > F Sl > F -§-_______§11___].; F Sn

init state final output:

Benefit of folding over SNARK recursion:
no need to run the verifier’s circuit in SNARK prover

ZKP MOOC

Putting folding to use ...

A,B,D € F3;*V: an R1CS program The committed R1CS instance:
Instance: (x, ¢, com
A,B,D . (E E)
x = (i, g, 5,5, ®) N Witness: (w, ,rE). |
> o F(s,) s.t. z = (x,w) satisfies
S =F(s,w
W i ifi = 0thens = s, (AZ)O(BZ)__C(DZ)+E
comg = commit(E, 1)
IVC is a sequence of valid (instance-witness) pairs: final output/\
(0, s9, So, S1, W1), €1, COME, (1, 89, S1, S2, W3), €3, comg, (2,80, S2, 53, w3), €3, compg, (3,0, S3, 54 wy), C4, COME,
W4, El’rEl W2,E2,TE2 W3,E3,TE3 Wy, E4,T'E4

ZKP MOOC

Putting folding to use ...

A B,D € [F%X”; an R1CS program The committed R1CS instance:
Instance: (x, ¢, com
A,B,D Wi (: E)
x = (i, g, 5,5, ®) N itness: (w, ,rE). |
> o F(s,) s.t. z = (x,w) satisfies
s =F(s,w
W i ifi = 0thens = s, (AZ)O(BZ)__C(DZ)+E
comg = commit(E, 1)
IVC is a sequence of valid (instance-witness) pairs:
X1,Cq, ComE1 X2,Cy, COmE2 X3,C3, C0m53 X4, Cy, ComE4
W4, El’rEl W2,E2,TE2 W3,E3,TE3 Wy, E4,T'E4

ZKP MOOC

Putting folding to use ...

A,B,D € F3*: an R1CS program

x = (i,Sp,S,S,w)

A,B,D

The committed R1CS instance:
Instance: (x, ¢, compg)

1

.| check:

s =F(s,w)
ifi = 0thens =5,

Witness: (W, E, 1)
s.t. z = (x,w) satisfies

{(Az) o (Bz) = c(D2) + E

comg = commit(E, 1)

IVC is a sequence of valid (instance-witness) pairs:

fold 15t and 2nd
instances

X12,C12, ComE12

Wiz, E12,TE,,

X3, C3,COMg X4, Cy, COME
3 4

ws, E3, TE, Wy, Ey, TE,

ZKP MOOC

Putting folding to use ...

A,B,D € F3*: an R1CS program

x = (i,Sp,S,S,w)

IVC is a sequence of valid (instance-witness) pairs:

The committed R1CS instance:
ABD Instance: (x, ¢, compg)
Witness: (W, E, 1)
> chec,k. F(s,) s.t. z = (x,w) satisfies
s =F(s,w
ifi = 0thens = s, (Az) o (Bz) = ,C(DZ) TE
1 comg = commit(E, 1)
fold 3@ instance X13,C13, COME X4,Cq,COME,
into first two Wis, E13, 7%, Wy, E4, g,

ZKP MOOC

Putting folding to use ...

A,B,D € F3*: an R1CS program

x = (i,Sp,S,S,w)

A B,D

The committed R1CS instance:
Instance: (x, ¢, compg)

1

.| check:

s =F(s,w)

Witness: (W, E, 1)
s.t. z = (x,w) satisfies

ifi = 0thens = s {(AZ) °(Bz) = c(Dz) + E

comg = commit(E, 1)

IVC is a sequence of valid (instance-witness) pairs:

fold 4th instance X14,C14,COME, ,
into first three Wi, 14,75,

ZKP MOOC

The key point ...

After all the superfast folding is done:

X14, C14, ComE14

* Verifier has instance (x14,C14,cOmg,,). Wie, Bra Ty,

* Prover needs to prove that (wyy, Eq4,7g,,) is a valid witness

Use whatever proof system to prove that this single pair is valid

Note: for a proving marketplace, fold in a tree structure so that folding
can be carried out in parallel by different parties.

ZKP MOOC

https://eprint.iacr.org/2022/1576.pdf

Unfortunately ... not so simple

To make this non-interactive: use Fiat-Shamir

* Folding the first pair: prover does 1,3 < H(xq3, x3, comr,, ..) and

Xi3 € Xyt 13Xy, C13 < Cip + 173, COMmg,, < comg,, + 1r3comy,,

= prover needs to prove that folding was done correctly

" Needs to prove that it used the correct 173 € [F,, (otherwise not sound)

Also need to link all instances: output of step i is input of stepi + 1

ZKP MOOC

Unfortunately ... not so simple

How? Augment R1CS (A,B,D) to also check folding.
Augmented R1CS program to (4’,B’, D’): [details omitted]

" takes a hash of three (4’, B’,D’) instances as input: instance x;,
accumulated instance x41_,;, folded instance x1_j+1

= Verify that given witness is valid for instance x; with respect to (4,B,D)

* Run folding alg. to verify that x1_,;,1 is the correct folding of x;_,; and x;

two multiplications in G

ZKP MOOC

Prover’s work at each step

At each folding step:

" prover manipulates a witness for an R1CS program that does

(i) evaluate F, (ii) do two multiplications in G

(iii) do some simple hashing.

= much faster than proving a SNARK verification circuit for F

ZKP MOOC

Supernova

Nova: repeated application of the same function F
(same relaxed R1CS program)

Supernova:
" supports Fj, ..., F, inchain (each one may appear multiple times)

= How? apply Nova to each set of F; separately

ZKP MOOC

Generalizations: Sangria

Nova’s folding scheme applies to any quadratic constraint system

Sangria: a folding technique for Plonk arithmetization

= an efficient IVC using Plonk arithmetization

" W, W, repregent F L-Jsm.g
| | | Plonk arithmetization
/
%0 s F 51 s F -§-2--_____§_n___.1> F Sn >
init state final output

ZKP MOOC

https://geometry.xyz/notebook/sangria-a-folding-scheme-for-plonk

END OF LECTURE

This completes the part of the course
on efficient SNARK constructions

ZKP MOOC

