
Zero Knowledge Proofs

Recursive SNARKs
Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

ZKP MOOC

Recall: SNARK algorithms

A preprocessing SNARK is a triple (S, P, V):

▪ S(𝐶) ⇾ public parameters (𝑝𝑝, 𝑣𝑝) for prover and verifier

▪ P(𝑝𝑝, 𝒙,𝒘) ⇾ proof 𝜋

▪ V(𝑣𝑝, 𝒙, 𝝅) ⇾ accept or reject

ZKP MOOC

SNARK types

In the last few lectures, we saw several SNARKs:

▪ Groth16, Plonk-KZG:

⇒ short proofs, but prover time is 𝑂(𝑛 log 𝑛)

▪ FRI-based proofs (as well as Breakdown, Orion, Orion+, …):

⇒ faster prover, but longer proofs

ZKP MOOC

Two level SNARK recursion:
proving knowledge of a proof

public: 𝑥
witness: 𝑤

SNARK
prover 𝑃

(𝑆, 𝑃, 𝑉)
π

proves 𝑃 knows 𝑤 s.t.
𝐶(𝑥, 𝑤) = 0

proves 𝑃′ knows 𝜋 s.t.
𝑉(𝑥, 𝜋) = 𝑦𝑒𝑠𝑣𝑝,

Use V’(𝑥, 𝜋’) to verify final proof 𝜋’𝑣𝑝′,

public: 𝑣𝑝, 𝑥
witness: π

π’
(𝑆′, 𝑃′, 𝑉′)

SNARK
prover 𝑃′𝑥

ZKP MOOC

Application 1: proof compression

public: 𝑥
witness: 𝑤

SNARK
prover 𝑃

(𝑆, 𝑃, 𝑉)
π

fast prover & verifier, but
outputs a 100KB proof

slower prover,
1KB final proof

public: 𝑣𝑝, 𝑥
witness: π

π’
(𝑆′, 𝑃′, 𝑉′)

SNARK
prover 𝑃′𝑥

⇒ fast overall prover, and final proof is short
(used to prove complex statements)

ZKP MOOC

Why is this sound?

fix a circuit 𝐶: 𝔽𝑛 × 𝔽𝑚 ⇾ 𝔽

Recall: a SNARK (S,P,V) is knowledge sound for 𝐶 if (simplified):

for every poly-time prover 𝐴 there is a poly-time extractor 𝐸 s.t.

for all statements y ∈ 𝔽𝑛 :

Pr[𝐶 𝑦,𝑤 = 0:𝑤 ← 𝐸 𝑝𝑝, 𝑦] ≥ Pr[𝑉(𝑣𝑝, 𝑦, 𝐴(𝑝𝑝, 𝑦)) = yes] − 𝜀

Prob. 𝐸 extract a
valid witness for 𝑦

Prob. adv. 𝐴 outputs a
convincing proof for 𝑦

knowledge error

negl

ZKP MOOC

Why is this sound?

fix a circuit 𝐶: 𝔽𝑛 × 𝔽𝑚 ⇾ 𝔽 and let (pp,vp) ← 𝑆(𝐶).

Goal: prove that a 2-level recursive SNARK is knowledge sound for 𝐶

▪ Let 𝐶’((vp,𝑥), 𝜋) be the circuit [V(vp, 𝑥, 𝜋) == ‘yes’]

▪ Let 𝐴 be a convincing prover for (S’,P’,V’) with respect to 𝐶’

We need to build an extractor that outputs 𝑤 ∈ 𝔽𝑚 s.t. 𝐶(𝑥,𝑤) = 0

ZKP MOOC

Why is this sound?

▪ Let 𝐶’((vp,𝑥), 𝜋) be the circuit [V(vp, 𝑥, 𝜋) == ‘yes’]

▪ Let 𝐴 be a convincing prover for (S’,P’,V’) with respect to 𝐶’

For a given 𝑥 ∈ 𝔽𝑛 and vp, our extractor does:

▪ step 1: (S’,P’,V’) is knowledge sound for 𝐶’ ⇒
there is an extractor 𝐸′ that extracts a witness 𝜋 from 𝐴 s.t. V(vp, 𝑥, 𝜋) = ‘yes’

▪ step 2: (S,P,V) is knowledge sound for 𝐶 ⇒
there is an extractor 𝐸 that extracts a witness 𝑤 from 𝐸′ s.t. C(𝑥, 𝑤) = 0

𝐸’ is a convincing
prover for (S,P,V) for 𝐶.

ZKP MOOC

Why is this sound?

Success probability: let 𝑤 be the extracted witness

Pr[𝐶 𝑥,𝑤 = 0] ≥ Pr[𝜋′ ← 𝐴(𝑝𝑝, 𝑥) is a convincing proof] − 𝜀′ − 𝜀

Prob. 𝐸’ outputs a valid 𝜋

Prob. 𝐸 outputs a valid w

Suppose time(𝐸’) = 2 × time(𝐴) , time(𝐸) = 2 × time(𝐸’) ⇒ time(𝐸) = 4 × time(𝐴)

⇒ for n-level recursion time(𝐸(𝑛)) = 2n × time(A) , not poly-time!

⇒ can only prove security of recursion of depth log(security parameter 𝜆)

Caution:

ZKP MOOC

Another difficulty: random oracles

Recall: the Fiat-Shamir transform results in a SNARK (S,P,V)
where the P and V circuits query a random oracle (RO).

During recursion, how does prover process the verifier’s RO gates?

Answer:

▪ Instantiate the verifier’s RO with a concrete hash function H

▪ Then assume that the resulting (SH,PH,VH) is still secure

▪ Now we can recurse (but security proof requires an ugly assumption)

ZKP MOOC

Application 2: streaming proof generation

A typical prover (e.g., for zk-Rollup):

▪ Collect statements 𝑥1, 𝑤1 , … , 𝑥𝑛, 𝑤𝑛 from the public (e.g., Tx)

▪ Prove a conjunction: 𝐶 𝑥1, 𝑤1 = ⋯ = 𝐶 𝑥𝑛, 𝑤𝑛 = 0

The problem: need all 𝑛 statements before can begin to build proof

Can we generate the proof in a streaming fashion?

▪ Goal: begin to generate proof as soon as 𝑥1, 𝑤1 is available

ZKP MOOC

Streaming proof generation: zk-Rollups

Tx1, …, Tx10

start of
batch of
100 Tx

Post
batch
to L1

Tx11, …, Tx20 Tx91, …, Tx100…

Naively, can only generate state transition proof
once all 100 Tx are submitted.

generate
state transition

proof for all 100 Tx

𝝅

long delay

ZKP MOOC

Streaming proof generation: zk-Rollups

Tx1, …, Tx10

start of
batch of
100 Tx

Post
batch
to L1

Tx11, …, Tx20 Tx91, …, Tx100…

generate
proof 𝜋1

generate
proof 𝜋2

generate
proof 𝜋10

generate
proof of
proofs

𝝅
Much faster than starting to generate
entire proof 𝜋 after receiving Tx100.

much shorter delay

ZKP MOOC

Application 3: Layer-3 zk-Rollups

Alice:
10 ETH

Bob:
17 DAI

Rollup contract: Merkle state root

Rollup contract on layer-1
holds assets of all Rollup users,
and Merkle root of layer-2

assets: 7 ETH, 3 DAI, …

Layer-1 blockchain (L1)

Rollup state (L2)

Alice (on L2):
4 ETH, 1 DAI

Bob (on L2):
3 ETH, 2 DAI

…

First, a very brief review of Rollups

…

ZKP MOOC

Transfers inside Rollup are easy

Alice:
10 ETH

Bob:
17 DAI

Rollup state (L2)

Alice (on L2):
4 ETH, 1 DAI

Bob (on L2):
3 ETH, 2 DAI

Rollup contract: Merkle state root

…

assets: 7 ETH, 3 DAI, …

Layer-1 blockchain (L1)

…

[A⇾B: 2 ETH], 𝑠𝑖𝑔𝐴

(along with hundreds of Tx)

ZKP MOOC

Alice:
10 ETH

Bob:
17 DAI

Alice (on L2):
2 ETH, 1 DAI

Bob (on L2):
5 ETH, 2 DAI

Rollup contract:

…

assets: 7 ETH, 3 DAI, …

Layer-1 blockchain (L1)

…

[A⇾B: 2 ETH], 𝑠𝑖𝑔𝐴

(along with hundreds of Tx)

updated state root, proof 𝝅

note: no assets move on the L1

updated state root

State transition proof 𝝅: proves that Tx batch is valid and that new root is correct

Transfers inside Rollup are easy

ZKP MOOC

Transferring funds to and from Rollup

Alice sends funds to Rollup:
▪ Alice sends funds from her L1 address to the Rollup contract

▪ Rollup coordinator sends updated state root to L1 contract
to record Alice’s new balance

Alice withdraws funds from Rollup:
▪ Alice requests L1 Rollup contract to send her funds to an L1 address

▪ Rollup coordinator sends updated state root to L1 contract

⇒ Much more expensive than in-Rollup transfers

ZKP MOOC

Running a dApps in a Rollup

…

Layer-1 blockchain (L1)

L2 Rollup contract:
state root, assets

Alice: stateA Bob: stateB

L2 Rollup
(e.g., zkEVM)…Alice:

L2-stateA

Bob:
L2-stateB

dApp:
L2-state

exchange 4 ETH for DAI

Rollup coordinator computes updated state root, and state transition proof 𝜋

proof 𝜋 of correct execution,
new state root

ZKP MOOC

Running a dApps in a Rollup

…

Layer-1 blockchain (L1)

L2 Rollup contract:
state root, assets

Alice: stateA Bob: stateB

L2 Rollup
(e.g., zkEVM)…Alice:

L2-stateA

Bob:
L2-stateB

dApp:
L2-state

exchange 4 ETH for DAI

Rollup coordinator computes updated state root, and proof 𝜋

proof 𝜋 of correct execution,
new state root

State transition proof 𝜋 proves that:

• Tx from Alice is valid (properly signed and she has sufficient balance)

• new state root reflects the correct execution of dApp EVM code on L2
… a complex statement to prove

ZKP MOOC

One Rollup contract can support many L2’s

…

Layer-1 blockchain (L1)

root[0], root[1], root[2]
holds assets of all Rollups

L2 Rollup contract
Alice: stateA Bob: stateB

L2 Rollup -- org [0]

Rollups run by different orgs: all must use the same rules for updating state root
⇒ same execution engine (e.g., EVM) for all L2 dApps

L2 Rollup -- org [1] L2 Rollup -- org [2]

ZKP MOOC

Layer-3 zk-Rollup

A gaming company runs an L2 Rollup:

▪ Wants a custom execution engine optimized for its games

▪ Wants a faster settlement rate than L2 ⇾ L1 settlement rate

What to do?

▪ Run an L3 on top of its L2

⇒ requires recursive state transition proofs

ZKP MOOC

Layer-3 zk-Rollup

…

Layer-1 blockchain (L1)

root[0], root[1], root[2]
holds assets of all Rollups
L2 Rollup contract (EVM)

Alice: stateA Bob: stateB

L2 Rollup
(Gaming Co)

state root of L3, assets of L3
L3 Rollup contract (fancy EVM)

L3 Rollup
(Game)

Alice (on L3): L3state Bob (on L3): L3state …

ZKP MOOC

Layer-3 zk-Rollup

Alice on L3: [send an NFT to a dApp L3], 𝑠𝑖𝑔𝐴 (dApp uses fancy EVM code)

Every second: L3 coordinator ⇾ L2 coordinator:
new L3 state root and state transition proof 𝜋3

▪ L2 Rollup contract: check proof and record updated L3 state root

Every minute: L2 coordinator has 60 proofs from L3 coordinator

▪ Construct a single recursive proof 𝝅𝟐 that all 60 proofs from L3 are valid

▪ L2 coordinator ⇾ L1 contract: latest L2 state root and the proof 𝜋2
▪ L1 contract: check proof 𝜋2 and record updated L2 state root

ZKP MOOC

Application 4:
Incrementally Verifiable Computation (IVC) [Valiant’08]

Consider a long computation done by iterating a function F:

Deep Thought

F

𝜔1

F

𝜔2

F

𝜔𝑛

𝑠𝑛
final output

witnesses …

state 𝑠1

Goal: succinct proof that prover has 𝜔1, … , 𝜔𝑛 s.t. final output 𝑠𝑛 is correct

The verifier has 𝐹 and public values: 𝑛, 𝑠0, s𝑛

𝑠0
init state

𝑠2 𝑠𝑛−1

https://iacr.org/archive/tcc2008/49480001/49480001.pdf

ZKP MOOC

IVC: construction [Valiant’08]

High level idea (informal):

• every step outputs a proof that the computation is correct to this point

• Specifically, for 𝑖 = 1,… , 𝑛, at step 𝑖 prover outputs 𝑠𝑖 and a proof 𝜋𝑖
that proves prover has a witness 𝑠𝑖−1,𝜔𝑖 , 𝜋𝑖−1 such that:

𝐹 𝑠𝑖−1,𝜔𝑖 = 𝑠𝑖 and 𝑉(𝑣𝑝, (𝑖-1, 𝑠0, 𝑠𝑖−1), 𝜋𝑖−1) = yes

⇒ final proof 𝜋𝑛 is a succinct proof that
prover has 𝜔1, … ,𝜔𝑛 s.t. final output 𝑠𝑛 is correct

ZKP MOOC

The statement at step number 𝑖 (𝑖 > 0)

Prover 𝑃

F

𝜔𝑖

(𝑣𝑝, 𝑖-1, 𝑠0, 𝑠𝑖−1)

proof 𝜋𝑖−1

(𝑣𝑝, 𝑖, 𝑠0, 𝑠𝑖)

proof 𝜋𝑖 Verifier

(𝑣𝑝, 𝑛, 𝑠0, 𝑠𝑛)

𝜋𝑛 yes/no

statement

I know a witness (𝑠𝑖−1, 𝜔𝑖 , 𝜋𝑖−1) for the statement (𝑣𝑝, 𝑖, 𝑠0, 𝑠𝑖) such that:

𝐹 𝑠𝑖−1, 𝜔𝑖 = 𝑠𝑖 and 𝑉(𝑣𝑝, (𝑖-1, 𝑠0, 𝑠𝑖−1), 𝜋𝑖−1) = yes

ZKP MOOC

Applications of IVC

1. Break a long computation into a sequence of small steps

𝐹: one microprocessor step (Risc5, EVM, …)

Prover needs far less memory per step compared to a monolithic proof

F

𝜔1

F

𝜔2

F

𝜔𝑛

𝑠𝑛
final output

state 𝑠1𝑠0
init state

𝑠 𝑠𝑛−1

ZKP MOOC

Applications of IVC

2. A succinct proof that current state of blockchain is correct

𝑠0: initial state of chain, 𝑠𝑛: current state of chain

𝜔1, … , 𝜔𝑛: blocks of valid transactions

Used in Mina blockchain ⇒ verify state of chain by checking one recursive proof

3. Verifiable Delay Functions (VDF): succinct proof that 𝑠𝑛 is equal to 𝐻 𝑛 (𝑠0)

𝑠0 H H
𝑠

H
𝑠

H
𝑠𝑛−2 H

𝑠𝑛−1𝑠3 𝑠𝑛

ZKP MOOC

Application 5: a market for ZK provers

Anyone with a GPU will be paid to create ZK proofs

tx1

tx2

tx3

tx4

market

𝜋

𝜋1

𝜋2
selects provers

and distributes rewards

prover 1

prover 2

prover 3

Credit: Faithie/Shutterstock

ZKP MOOC

Choosing Curves to
Support Recursion

ZKP MOOC

Two level SNARK recursion:
proving knowledge of a proof

public: 𝑥
witness: 𝑤

SNARK
prover 𝑃

(𝑆, 𝑃, 𝑉)
π

proves 𝑃 knows 𝑤 s.t.
𝐶(𝑥, 𝑤) = 0

proves 𝑃′ knows 𝜋 s.t.
𝑉(𝑥, 𝜋) = 𝑦𝑒𝑠𝑣𝑝,

public: 𝑣𝑝, 𝑥
witness: π

π’
(𝑆′, 𝑃′, 𝑉′)

SNARK
prover 𝑃′𝑥

inner proof system outer proof system

ZKP MOOC

Review

Fix a circuit 𝐶: 𝔽𝑝
𝑛 × 𝔽𝑝

𝑚 ⇾ 𝔽𝑝 and a statement 𝑥 ∈ 𝔽𝑝
𝑛.

▪ To prove “I know 𝑤 s.t. 𝐶(𝑥, 𝑤) = 0” we use commitments to polys. in 𝔽𝑝[𝑋]

▪ Prover commits to a polynomial that encodes the computation trace

▪ To commit to a polynomial 𝑓 ∈ 𝔽𝑝[𝑋] using KZG:

▪ need a group 𝔾 of order 𝑝 ; a KZG commitment is a single element in 𝔾

How is the group 𝔾 represented?

ZKP MOOC

Algebraic Groups

We say that 𝔾 is an algebraic group defined over 𝔽𝑞 if 𝔾 ⊆ 𝔽𝑞
ℓ and

▪ the group operation can be computed by polynomials over 𝔽𝑞:

there are polynomials 𝑓1, … , 𝑓ℓ ∈ 𝔽𝑞[𝑋
ℓ] such that

for all 𝑎, 𝑏 ∈ 𝔾 we have that 𝑎 + 𝑏 = (𝑓1(𝑎, 𝑏), … , 𝑓ℓ 𝑎, 𝑏) ∈ 𝔾

▪ there is an efficient algorithm that test if 𝑎, 𝑏 ∈ 𝔾 satisfy 𝑎 = 𝑏.

Example: 𝔾 is the group of points of an elliptic curve defined over 𝔽𝑞 (𝔾 ⊆ 𝔽𝑞
3)

▪ The group has some order 𝑝 (which is close to 𝑞)

ZKP MOOC

Recursive proofs: the arithmetic problem

Let 𝔾 be an algebraic group of order 𝑝, defined over 𝔽𝑞

⇒ The prover supports circuits over 𝔽𝑝, but verifier needs 𝔽𝑞 for group ops.

Prover
P’

I can do proofs for
circuits over 𝔽𝑝

Verifier
V

That’s great, but I need
arithmetic over 𝔽𝑞

Verifier circuit does
group operations in 𝔾
⇒ arithmetic in 𝔽𝑞

ZKP MOOC

What to do?

Option 1: field emulation

▪ Implement arithmetic in 𝔽𝑞 as a circuit over 𝔽𝑝
▪ The problem: blows up the size of verifier circuit ⇒ slow prover.

Option 2: find an algebraic group 𝔾 of order 𝑝, defined over 𝔽𝑝
▪ Now both the prover and verifier use arithmetic in 𝔽𝑝
▪ The bad news: the universe doesn’t want us to have that …

⇒ the discrete log problem is always easy in such groups

✔️

ex: a pairing circuit
(as in KZG eval) is huge

ZKP MOOC

Solution: a chain of groups

Idea: find groups 𝔾1 and 𝔾2 such that

▪ 𝔾1 has order 𝑝, and is defined over 𝔽𝑞
▪ 𝔾2 has order 𝑞, and is defined over 𝔽𝑟

𝔾1 = 𝑝 ⊆ 𝔽𝑞

𝔾2 = 𝑞 𝔽𝑟⊆

ℓ

ℓ

ZKP MOOC

Solution: a chain of groups

Now, to do a two-level recursion:

▪ Inner proof system (S, P, V) uses poly. commitments in 𝔾1

⇒ Prover P supports circuits over 𝔽𝑝, Verifier needs arithmetic in 𝔽𝑞

▪ Outer proof system (S’, P’, V’) uses poly. commitments in 𝔾2

⇒ Prover P’ supports circuits over 𝔽𝑞, verifier needs arithmetic in 𝔽𝑟

A longer chain of groups supports more levels of recursion

ZKP MOOC

Even better: a cycles of groups [BCTV’14]

Find groups 𝔾1 and 𝔾2 such that

▪ 𝔾1 has order 𝑝, and is defined over 𝔽𝑞
▪ 𝔾2 has order 𝑞, and is defined over 𝔽𝑝

𝔾1 = 𝑝 ⊆ 𝔽𝑞

𝔾2 = 𝑞𝔽𝑝 ⊇

ℓ

ℓ

enables longer recursion
by jumping back and forth
between two proof systems

https://eprint.iacr.org/2014/595.pdf

ZKP MOOC

Recursion using a cycle [BCTV’14]

public: 𝑥
witness: 𝑤

prover 𝑃

prove:
𝐶(𝑥,𝑤) = 0

public: 𝑥, 𝑣𝑘
witness: 𝜋1

prover 𝑃′

prove:
𝑉 𝑣𝑘, 𝑥, 𝜋1 = 1

𝜋1

public: 𝑥, 𝑣𝑘′
witness: 𝜋2

prover 𝑃

prove:
𝑉′ 𝑣𝑘′, 𝑥, 𝜋2 = 1

𝜋2

𝐶 uses arithmetic in 𝔽𝑝
Prover 𝑃 uses 𝔾1 ⊆ 𝔽𝑞

𝑉 uses arithmetic in 𝔽𝑞
Prover 𝑃’ uses 𝔾2 ⊆ 𝔽𝑝

𝑉′ uses arithmetic in 𝔽𝑝
Prover 𝑃 uses 𝔾1 ⊆ 𝔽𝑞

𝜋3 𝑃′

…

https://eprint.iacr.org/2014/595.pdf

ZKP MOOC

Three types of cycles of length two

Both 𝔾1 and 𝔾2 are “pairing” groups (both support KZG)

▪ the bad news: best constructions result in inefficient groups

𝔾1 is a pairing group, but 𝔾2 is a regular group

▪ use KZG in 𝔾1 and a non-pairing PCS in 𝔾2 (e.g., bulletproofs)

Neither group is a pairing group: use a non-pairing PCS in both

▪ The pasta curves: pallas and vesta (next slide)

ZKP MOOC

A large family of cycles of type-3

Let 𝐸/ℚ be the elliptic curve: 𝑦2 = 𝑥3 + 𝑑 (for some 𝑑)

For “many” primes 𝑞, if 𝑝 = 𝐸 𝔽𝑞 is a prime then

𝐸 𝔽𝑝 = 𝑞 and 𝐸 𝔽𝑞 = 𝑝

Pasta uses 𝑑 = 5 and both curves are convenient for recursion

▪ Developed for Halo2
Silverman, Stange 2009: Corollary 22

https://arxiv.org/pdf/0912.1831.pdf

Credit: Faithie/Shutterstock

ZKP MOOC

Efficient Recursion
via Statement Folding:

Nova, Supernova, and generalizations

eprint.iacr.org/2021/370.pdf

(see also eprint.iacr.org/2020/1618.pdf)

ZKP MOOC

The difficulty with full recursion

▪ Prover 𝑃 needs to build a proof for a circuit 𝐶 that
runs the entire verification algorithm 𝑉(𝑣𝑘, 𝑥, 𝜋).
▪ Expensive: 𝑉 needs to verify eval. proofs for a poly. commitment

▪ Halo: takes eval proof verification out of 𝐶 ⇒ simpler 𝐶

▪ Nova: takes (almost) all verification checks out of 𝐶
⇒ even simpler 𝐶

https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2021/370

ZKP MOOC

A folding scheme: compress two instances into one

Let 𝐶: 𝔽𝑝
𝑛 × 𝔽𝑝

𝑚 ⇾ 𝔽𝑝 be a circuit

A folding scheme for 𝐶 is a protocol between two parties:

Folding
Prover

Folding
Verifier

𝑥1, 𝑤1
(𝑥2, 𝑤2)

𝑥1
𝑥2

(𝑥, 𝑤) 𝑥

Complete: if 𝐶 𝑥1, 𝑤1 = 𝐶 𝑥2, 𝑤2 = 0 then 𝐶 𝑥,𝑤 = 0

Knowledge sound: ∀𝑃∗ ∃𝐸 s.t. ∀ 𝑥1, 𝑥2: 𝑃∗ outputs valid 𝑤 for 𝑥 ⇒ 𝐸 outputs valid 𝑤1, 𝑤2

𝑇

𝑟 ← ℛ$

ZKP MOOC

Verifier of (𝑥, 𝑤) must be convinced
that 𝑟 was computed correctly

A folding scheme: compress two instances into one

Folding
Prover

𝑥1, 𝑤1
(𝑥2, 𝑤2)

(𝑥, 𝑤)

To make Folding Prover non-interactive, use Fiat-Shamir:
(i) 𝑟 ← 𝐻(𝑥1, 𝑥2, 𝑇) , (ii) output (𝑥, 𝑤)

𝑇

Let 𝐶: 𝔽𝑝
𝑛 × 𝔽𝑝

𝑚 ⇾ 𝔽𝑝 be a circuit

A folding scheme for 𝐶 is a protocol between two parties:

ZKP MOOC

Recall: every circuit can be represented as a
rank-1 constraint system (R1CS)

𝐶: 𝔽𝑝
𝑛 × 𝔽𝑝

𝑚 ⇾ 𝔽𝑝 𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣

(circuit 𝐶) (R1CS program)

simple
translation

𝑥,𝑤′ ∈ 𝔽𝑝
𝑛+𝑚

s.t. 𝐶(𝑥,𝑤′) = 0

(valid statement,witness pair)

simple
translation

𝑧 = (𝑥,𝑤) ∈ 𝔽𝑝
𝑢

s.t. 𝐴𝑧 ∘ 𝐵𝑧 = 𝐷𝑧

(𝑥1, 𝑥2) ∘ y1, y2 = (x1y1, x2y2)

ZKP MOOC

A folding scheme for R1CS

A folding scheme: compress two instances into one

Example: fix an R1CS program 𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣

▪ instance 1: public 𝑥1 ∈ 𝔽𝑝
𝑛, witness 𝑧1 = (𝑥1, 𝑤1) ∈ 𝔽𝑝

𝑣

▪ instance 2: public 𝑥2 ∈ 𝔽𝑝
𝑛, witness 𝑧2 = (𝑥2, 𝑤2) ∈ 𝔽𝑝

𝑣

We know 𝐴𝑧𝑖 ∘ 𝐵𝑧𝑖 = 𝐷𝑧𝑖 for 𝑖 = 1,2

ZKP MOOC

Folding the two instances into one

Attempt 1: verifier chooses 𝑟 ← 𝔽𝑝 and sets 𝑥 ← 𝑥1 + 𝑟 𝑥2 .

prover sets 𝑧 ← 𝑧1 + 𝑟 𝑧2 = (𝑥1 + 𝑟 𝑥2 , 𝑤1 + 𝑟 𝑤2)

Then:

𝐴𝑧 ∘ 𝐵𝑧 = 𝐴(𝑧1 + 𝑟 𝑧2) ∘ 𝐵(𝑧1 + 𝑟 𝑧2)

= (𝐴𝑧1) ∘ 𝐵𝑧1 + r2 (𝐴𝑧2) ∘ 𝐵𝑧2 + 𝑟(𝐴𝑧2) ∘ 𝐵𝑧1 + 𝑟(𝐴𝑧1) ∘ 𝐵𝑧2

= 𝐷𝑧1 + 𝑟2𝐷𝑧2 + 𝐸

𝐸 ∈ 𝔽𝑝
𝑢

$

⇒ not quite an R1CS witness: we want 𝐴𝑧 ∘ 𝐵𝑧 = 𝐷𝑧

ZKP MOOC

Let’s try again: relaxed R1CS

Relaxed R1CS instance: 𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣, (𝑥 ∈ 𝔽𝑝

𝑛 , 𝑐 ∈ 𝔽𝑝, 𝐸 ∈ 𝔽𝑝
𝑢)

Witness: 𝑧 = (𝑥,𝑤) ∈ 𝔽𝑝
𝑣 s.t. 𝐴𝑧 ∘ 𝐵𝑧 = 𝑐(𝐷𝑧) + 𝐸

Now, again, fix a relaxed R1CS program 𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣

▪ instance 1: public (𝑥1, 𝑐1, 𝐸1), witness 𝑧1 = (𝑥1, 𝑤1) ∈ 𝔽𝑝
𝑣

▪ instance 2: public (𝑥2, 𝑐2, 𝐸2), witness 𝑧2 = (𝑥2, 𝑤2) ∈ 𝔽𝑝
𝑣

We know 𝐴𝑧𝑖 ∘ 𝐵𝑧𝑖 = 𝑐𝑖(𝐷𝑧𝑖) + 𝐸𝑖 for 𝑖 = 1,2

ZKP MOOC

Folding the two relaxed R1CS instances into one

Attempt 2: step 1: Prover computes and send to V:

𝑇 ← (𝐴𝑧2) ∘ 𝐵𝑧1 + (𝐴𝑧1) ∘ 𝐵𝑧2 − 𝑐1(𝐷𝑧2) − 𝑐2(𝐷𝑧1)

step 2: verifier chooses 𝑟 ← 𝔽𝑝, sends 𝑟 to P, and sets

𝑥 ← 𝑥1 + 𝑟 𝑥2 , 𝑐 ← 𝑐1 + 𝑟 𝑐2 , 𝐸 ← 𝐸1 + 𝑟𝑇 + 𝑟2 𝐸2

step 3: prover sets 𝑧 ← 𝑧1 + 𝑟 𝑧2 = (𝑥1 + 𝑟 𝑥2 , 𝑤1 + 𝑟 𝑤2)

(cross terms)

$

ZKP MOOC

Why this is correct

𝐴𝑧 ∘ 𝐵𝑧 =

= (𝐴𝑧1) ∘ 𝐵𝑧1 + r2 (𝐴𝑧2) ∘ 𝐵𝑧2 + 𝑟(𝐴𝑧2) ∘ 𝐵𝑧1 + 𝑟(𝐴𝑧1) ∘ 𝐵𝑧2

= 𝑐1 𝐷𝑧1 + 𝐸1 + 𝑟2𝑐2 𝐷𝑧2 + 𝑟2𝐸2 + 𝑟 [(𝐴𝑧2) ∘ 𝐵𝑧1 + (𝐴𝑧1) ∘ 𝐵𝑧2]

= (𝑐1+𝑟𝑐2) 𝐷𝑧1 + 𝑟𝐷𝑧2 + E1 + 𝑟2E2 + 𝑟𝑇

= 𝑐 𝐷𝑧 + 𝐸

⇒ So, 𝑤 is a valid witness for the relaxed R1CS instance (𝑥, 𝑐, 𝐸)

𝐸

ZKP MOOC

Why is this knowledge sound? (informal)

For every folding prover 𝑃∗, there is an extractor 𝑬 s.t.

for all instances 𝑥1, 𝑐1, 𝐸1 and 𝑥2, 𝑐2, 𝐸2 ,

if folding verifier outputs 𝑥, 𝑐, 𝐸 and 𝑃∗ outputs a valid 𝑤,

⇒

w.h.p, 𝑬 extracts from 𝑃∗ valid witnesses 𝑤1, 𝑤2 for the two instances

eprint.iacr.org/2021/370.pdf (lemma 4)
[note: also need to commit to 𝑤 in the instance]

ZKP MOOC

Not good enough

In a relaxed R1CS the verifier has (𝑥, 𝑐, 𝐸) ; prover has 𝑧.

▪ The problem: 𝐸 can be large (much larger than 𝑥)

Solution: committed relaxed R1CS

▪ Verifier has (𝑥, 𝑐, commit(𝐸, 𝑟𝐸)) ; prover has (𝑧, 𝐸, 𝑟𝐸)

short commitment to 𝐸

▪ Commitment needs to be “additive” to enable folding

ZKP MOOC

Recall: homomorphic commitment scheme

Two algorithms:

▪ commit(𝑚, 𝑟𝑚) ⇾ com 𝑚 ∈ ℳ, 𝑟𝑚 ← ℛ , com∈ 𝒞

▪ verify(𝑚, com, 𝑟𝑚) ⇾ accept or reject

Properties: (informal)

▪ binding: cannot produce com and two valid openings for com

▪ hiding: com reveals nothing about committed data

$

ZKP MOOC

Recall: homomorphic commitment scheme

Suppose ℳ = 𝔽𝑛, ℛ = 𝔽, and 𝒞 is an additive group

▪ The commitment scheme is homomorphic if for all 𝑚1, 𝑚2, 𝑟1, 𝑟2:

commit(𝑚1, 𝑟1) + commit(𝑚2, 𝑟2) = commit(𝑚1 +𝑚2, 𝑟1 + 𝑟2)

▪ The commitment scheme is succinct if commitment size is 𝑂𝜆(1)

Many examples: Pedersen, lattice-based, …

ZKP MOOC

Folding scheme for committed relaxed R1CS

Instance: 𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣, (𝑥 ∈ 𝔽𝑝

𝑛 , 𝑐 ∈ 𝔽𝑝, com𝐸 ∈ 𝔽𝑝
𝑢)

Witness: (𝑧, 𝐸, 𝑟𝐸) s.t. 𝐴𝑧 ∘ 𝐵𝑧 = 𝑐(𝐷𝑧) + 𝐸 and com𝐸 = commit(𝐸, 𝑟𝐸)

As usual, fix an R1CS program 𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣

▪ instance 1: public (𝑥1, 𝑐1, 𝑐𝑜𝑚𝐸1), witness (𝑧1, 𝐸1, 𝑟𝐸1)

▪ instance 2: public (𝑥2, 𝑐2, 𝑐𝑜𝑚𝐸2), witness (𝑧2, 𝐸2, 𝑟𝐸2)

ZKP MOOC

Folding scheme for committed relaxed R1CS

▪ Prover computes

𝑇 ← (𝐴𝑧2) ∘ 𝐵𝑧1 + (𝐴𝑧1) ∘ 𝐵𝑧2 − 𝑐1(𝐷𝑧2) − 𝑐2(𝐷𝑧1)

sends 𝑐𝑜𝑚𝑇 ← 𝑐𝑜𝑚𝑚𝑖𝑡(𝑇, 𝑟𝑇) to V.

▪ Verifier chooses 𝑟 ← 𝔽𝑝, sends 𝑟 to P, and sets

𝑥 ← 𝑥1 + 𝑟 𝑥2 , 𝑐 ← 𝑐1 + 𝑟 𝑐2 , com𝐸 ← 𝑐𝑜𝑚𝐸1 + 𝑟 ∙ 𝑐𝑜𝑚𝑇 + 𝑟2 ∙ 𝑐𝑜𝑚𝐸2

▪ Prover sets
𝑧 ← 𝑧1 + 𝑟 𝑧2, 𝐸 ← 𝐸1 + 𝑟𝑇 + 𝑟2𝐸2 , 𝑟𝐸 ← 𝑟𝐸1 + 𝑟 ∙ 𝑟𝑇 + 𝑟2 ∙ 𝑟𝐸2

$

homomorphic commitment

$

ZKP MOOC

Folding scheme for committed relaxed R1CS

▪ Prover computes

𝑇 ← (𝐴𝑧2) ∘ 𝐵𝑧1 + (𝐴𝑧1) ∘ 𝐵𝑧2 − 𝑐1(𝐷𝑧2) − 𝑐2(𝐷𝑧1)

sends 𝑐𝑜𝑚𝑇 ← 𝑐𝑜𝑚𝑚𝑖𝑡(𝑇, 𝑟𝑇) to V.

▪ Verifier chooses 𝑟 ← ℛ , sends 𝑟 to P, and sets

𝑥 ← 𝑥1 + 𝑟 𝑥2 , 𝑐 ← 𝑐1 + 𝑟 𝑐2 , com𝐸 ← 𝑐𝑜𝑚𝐸1 + 𝑟 ∙ 𝑐𝑜𝑚𝑇 + 𝑟2 ∙ 𝑐𝑜𝑚𝐸2

▪ Prover sets
𝑧 ← 𝑧1 + 𝑟 𝑧2, 𝐸 ← 𝐸1 + 𝑟𝑇 + 𝑟2𝐸2 , 𝑟𝐸 ← 𝑟𝐸1 + 𝑟 ∙ 𝑟𝑇 + 𝑟2 ∙ 𝑟𝐸2

homomorphic commitment

This is complete and knowledge sound

Credit: Faithie/Shutterstock

ZKP MOOC

Putting folding to use …

ZKP MOOC

Putting folding to use …

Let’s see how to build a very efficient IVC:

F

𝜔1

F

𝜔2

F

𝜔𝑛

𝑠𝑛
final output

𝑠1𝑠0
init state

𝑠 𝑠𝑛−1

Benefit of folding over SNARK recursion:
no need to run the verifier’s circuit in SNARK prover

Goal: proof that prover
knows 𝜔1, … , 𝜔𝑛

such that 𝑠𝑛 is correct

ZKP MOOC

Putting folding to use …

𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣: an R1CS program

𝒙 = (𝑖, 𝑠0, 𝑠, 𝑠’, 𝜔)

𝑤

check:
s’ = 𝐹(𝑠, 𝜔)
if 𝑖 = 0 then s = 𝑠0

A,B,D

𝐴𝑧 ∘ 𝐵𝑧 = 𝑐(𝐷𝑧) + 𝐸
com𝐸 = commit(𝐸, 𝑟𝐸)

The committed R1CS instance:
Instance: (𝒙, 𝑐, com𝐸)

Witness: 𝑤, 𝐸, 𝑟𝐸
s.t. 𝑧 = (𝑥, 𝑤) satisfies

(0, 𝑠0, 𝑠0, 𝑠1, 𝜔1), 𝑐1, 𝑐𝑜𝑚𝐸1

𝑤1, 𝐸1, 𝑟𝐸1

IVC is a sequence of valid (instance-witness) pairs:

(1, 𝑠0, 𝑠1, 𝑠2, 𝜔2), 𝑐2, 𝑐𝑜𝑚𝐸2

𝑤2, 𝐸2, 𝑟𝐸2

(2, 𝑠0, 𝑠2, 𝑠3, 𝜔3), 𝑐3, 𝑐𝑜𝑚𝐸3

𝑤3, 𝐸3, 𝑟𝐸3

(3, 𝑠0, 𝑠3, 𝑠4, 𝜔4), 𝑐4, 𝑐𝑜𝑚𝐸4

𝑤4, 𝐸4, 𝑟𝐸4

final output

ZKP MOOC

Putting folding to use …

𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣: an R1CS program

𝒙 = (𝑖, 𝑠0, 𝑠, 𝑠’, 𝜔)

𝑤

check:
s’ = 𝐹(𝑠, 𝜔)
if 𝑖 = 0 then s = 𝑠0

A,B,D

𝐴𝑧 ∘ 𝐵𝑧 = 𝑐(𝐷𝑧) + 𝐸
com𝐸 = commit(𝐸, 𝑟𝐸)

The committed R1CS instance:
Instance: (𝒙, 𝑐, com𝐸)

Witness: 𝑤, 𝐸, 𝑟𝐸
s.t. 𝑧 = (𝑥, 𝑤) satisfies

IVC is a sequence of valid (instance-witness) pairs:

𝒙𝟐, 𝑐2, 𝑐𝑜𝑚𝐸2

𝑤2, 𝐸2, 𝑟𝐸2

𝒙𝟑, 𝑐3, 𝑐𝑜𝑚𝐸3

𝑤3, 𝐸3, 𝑟𝐸3

𝒙𝟒, 𝑐4, 𝑐𝑜𝑚𝐸4

𝑤4, 𝐸4, 𝑟𝐸4

𝒙𝟏, 𝑐1, 𝑐𝑜𝑚𝐸1

𝑤1, 𝐸1, 𝑟𝐸1

ZKP MOOC

Putting folding to use …

𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣: an R1CS program

𝒙 = (𝑖, 𝑠0, 𝑠, 𝑠’, 𝜔)

𝑤

check:
s’ = 𝐹(𝑠, 𝜔)
if 𝑖 = 0 then s = 𝑠0

A,B,D

𝐴𝑧 ∘ 𝐵𝑧 = 𝑐(𝐷𝑧) + 𝐸
com𝐸 = commit(𝐸, 𝑟𝐸)

The committed R1CS instance:
Instance: (𝒙, 𝑐, com𝐸)

Witness: 𝑤, 𝐸, 𝑟𝐸
s.t. 𝑧 = (𝑥, 𝑤) satisfies

IVC is a sequence of valid (instance-witness) pairs:

𝒙𝟏𝟐, 𝑐12, 𝑐𝑜𝑚𝐸12

𝑤12, 𝐸12, 𝑟𝐸12

𝒙𝟑, 𝑐3, 𝑐𝑜𝑚𝐸3

𝑤3, 𝐸3, 𝑟𝐸3

𝒙𝟒, 𝑐4, 𝑐𝑜𝑚𝐸4

𝑤4, 𝐸4, 𝑟𝐸4

fold 1st and 2nd

instances

ZKP MOOC

Putting folding to use …

𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣: an R1CS program

𝒙 = (𝑖, 𝑠0, 𝑠, 𝑠’, 𝜔)

𝑤

check:
s’ = 𝐹(𝑠, 𝜔)
if 𝑖 = 0 then s = 𝑠0

A,B,D

𝐴𝑧 ∘ 𝐵𝑧 = 𝑐(𝐷𝑧) + 𝐸
com𝐸 = commit(𝐸, 𝑟𝐸)

The committed R1CS instance:
Instance: (𝒙, 𝑐, com𝐸)

Witness: 𝑤, 𝐸, 𝑟𝐸
s.t. 𝑧 = (𝑥, 𝑤) satisfies

IVC is a sequence of valid (instance-witness) pairs:

𝒙𝟏𝟑, 𝑐13, 𝑐𝑜𝑚𝐸13

𝑤13, 𝐸13, 𝑟𝐸13

𝒙𝟒, 𝑐4, 𝑐𝑜𝑚𝐸4

𝑤4, 𝐸4, 𝑟𝐸4

fold 3rd instance
into first two

ZKP MOOC

Putting folding to use …

𝐴, 𝐵, 𝐷 ∈ 𝔽𝑝
𝑢×𝑣: an R1CS program

𝒙 = (𝑖, 𝑠0, 𝑠, 𝑠’, 𝜔)

𝑤

check:
s’ = 𝐹(𝑠, 𝜔)
if 𝑖 = 0 then s = 𝑠0

𝐴, 𝐵, 𝐷

𝐴𝑧 ∘ 𝐵𝑧 = 𝑐(𝐷𝑧) + 𝐸
com𝐸 = commit(𝐸, 𝑟𝐸)

The committed R1CS instance:
Instance: (𝒙, 𝑐, com𝐸)

Witness: 𝑤, 𝐸, 𝑟𝐸
s.t. 𝑧 = (𝑥, 𝑤) satisfies

IVC is a sequence of valid (instance-witness) pairs:

𝒙𝟏𝟒, 𝑐14, 𝑐𝑜𝑚𝐸14

𝑤14, 𝐸14, 𝑟𝐸14

fold 4th instance
into first three

ZKP MOOC

The key point …

After all the superfast folding is done:

• Verifier has instance (𝒙𝟏𝟒, 𝑐14, 𝑐𝑜𝑚𝐸14).

• Prover needs to prove that (𝑤14, 𝐸14, 𝑟𝐸14) is a valid witness

Use whatever proof system to prove that this single pair is valid

Note: for a proving marketplace, fold in a tree structure so that folding
can be carried out in parallel by different parties.

𝒙𝟏𝟒, 𝑐14, 𝑐𝑜𝑚𝐸14

𝑤14, 𝐸14, 𝑟𝐸14

https://eprint.iacr.org/2022/1576.pdf

ZKP MOOC

Unfortunately … not so simple

To make this non-interactive: use Fiat-Shamir

▪ Folding the first pair: prover does 𝑟13 ← 𝐻(𝒙𝟏𝟐, 𝒙𝟑, com𝑇13, …) and

x13 ← x12+ 𝑟13x3 , 𝑐13 ← 𝑐12 + 𝑟13, com𝐸13 ← com𝐸12 + 𝑟13𝑐𝑜𝑚𝑇13

⇒ prover needs to prove that folding was done correctly

▪ Needs to prove that it used the correct 𝑟13 ∈ 𝔽p (otherwise not sound)

Also need to link all instances: output of step 𝑖 is input of step 𝑖 + 1

ZKP MOOC

Unfortunately … not so simple

How? Augment R1CS (A,B,D) to also check folding.

Augmented R1CS program to (𝐴’, 𝐵’, 𝐷’): [details omitted]

▪ takes a hash of three (𝐴’, 𝐵’, 𝐷’) instances as input: instance 𝒙𝒊 ,
accumulated instance 𝒙𝟏⇾𝒊 , folded instance 𝒙𝟏⇾𝒊+𝟏

▪ Verify that given witness is valid for instance 𝒙𝒊 with respect to (𝐴, 𝐵, 𝐷)

▪ Run folding alg. to verify that 𝒙𝟏⇾𝒊+𝟏 is the correct folding of 𝒙𝟏⇾𝒊 and 𝒙𝒊

two multiplications in 𝔾

ZKP MOOC

Prover’s work at each step

At each folding step:

▪ prover manipulates a witness for an R1CS program that does

(i) evaluate 𝐹, (ii) do two multiplications in 𝔾

(iii) do some simple hashing.

⇒ much faster than proving a SNARK verification circuit for 𝐹

ZKP MOOC

Supernova

Nova: repeated application of the same function 𝐹
(same relaxed R1CS program)

Supernova:

▪ supports 𝐹1, … , 𝐹𝑘 in chain (each one may appear multiple times)

▪ How? apply Nova to each set of 𝐹𝑖 separately

ZKP MOOC

Generalizations: Sangria

Nova’s folding scheme applies to any quadratic constraint system

Sangria: a folding technique for Plonk arithmetization

⇒ an efficient IVC using Plonk arithmetization

F

𝑤1

F

𝑤2

F

𝑤𝑛

𝑠𝑛
final output

𝑠1𝑠0
init state

𝑠2 𝑠𝑛−1

represent 𝐹 using
Plonk arithmetization

https://geometry.xyz/notebook/sangria-a-folding-scheme-for-plonk

Credit: Faithie/Shutterstock

ZKP MOOC

END OF LECTURE

This completes the part of the course
on efficient SNARK constructions

