Zero Knowledge Proofs

Recursive SNARKs

Instructors: **Dan Boneh**, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

Recall: SNARK algorithms

- A preprocessing SNARK is a triple (S, P, V):
- $S(C) \rightarrow$ public parameters (*pp*, *vp*) for prover and verifier
- $P(pp, x, w) \rightarrow proof \pi$
- $V(vp, x, \pi) \rightarrow \text{accept or reject}$

SNARK types

In the last few lectures, we saw several SNARKs:

- Groth16, Plonk-KZG:
 - \Rightarrow short proofs, but prover time is $O(n \log n)$
- FRI-based proofs (as well as Breakdown, Orion, Orion+, ...):
 - \Rightarrow faster prover, but longer proofs

Two level SNARK recursion: proving knowledge of a proof

Use V'(vp', x, π') to verify final proof π'

Application 1: proof compression

⇒ fast overall prover, and final proof is short (used to prove complex statements)

fix a circuit $C: \mathbb{F}^n \times \mathbb{F}^m \to \mathbb{F}$

Recall: a SNARK (S,P,V) is **knowledge sound** for *C* if (simplified): for every poly-time prover *A* there is a poly-time extractor *E* s.t. for all statements $y \in \mathbb{F}^n$: $\Pr[C(y,w) = 0: w \leftarrow E(pp,y)] \ge \Pr[V(vp, y, A(pp, y)) = yes] - \varepsilon$ Prob. *E* extract a valid witness for *y* $\Pr[C(y, w) = 0: w \leftarrow E(pp, y)] \ge \Pr[V(vp, y, A(pp, y)) = yes] - \varepsilon$

fix a circuit $C: \mathbb{F}^n \times \mathbb{F}^m \to \mathbb{F}$ and let $(pp,vp) \leftarrow S(C)$.

Goal: prove that a 2-level recursive SNARK is knowledge sound for *C*

- Let $C'((vp,x),\pi)$ be the circuit $[V(vp,x,\pi) == 'yes']$
- Let A be a convincing prover for (S',P',V') with respect to C'

We need to build an extractor that outputs $w \in \mathbb{F}^m$ s.t. C(x, w) = 0

- Let $C'((vp,x), \pi)$ be the circuit $[V(vp, x, \pi) == 'yes']$
- Let A be a convincing prover for (S', P', V') with respect to C'

For a given $x \in \mathbb{F}^n$ and vp, our extractor does:

E' is a convincing prover for (S,P,V) for *C*.

- **step 1**: (S',P',V') is knowledge sound for $C' \Rightarrow$ there is an extractor E' that extracts a witness π from A s.t. $V(vp, x, \pi) = 'yes'$
- step 2: (S,P,V) is knowledge sound for $C \Rightarrow$ there is an extractor *E* that extracts a witness *w* from *E*' s.t. C(x, w) = 0

Success probability: let w be the extracted witness $\Pr[C(x, w) = 0] \ge \Pr[\pi' \leftarrow A(pp, x) \text{ is a convincing proof}] - \varepsilon' - \varepsilon$ Prob. E' outputs a valid π Prob. E outputs a valid w Caution: Suppose time(E') = 2 × time(A), time(E) = 2 × time(E') \Rightarrow time(E) = 4 × time(A) \Rightarrow for n-level recursion time $(E^{(n)}) = 2^n \times \text{time}(A)$, not poly-time! \Rightarrow can only prove security of recursion of depth log(security parameter λ)

Another difficulty: random oracles

Recall: the Fiat-Shamir transform results in a SNARK (*S*,*P*,*V*) where the *P* and *V* circuits query a **random oracle** (RO).

During recursion, how does prover process the verifier's RO gates?

Answer:

- Instantiate the verifier's RO with a concrete hash function H
- Then <u>assume</u> that the resulting (S^H, P^H, V^H) is still secure
- Now we can recurse (but security proof requires an ugly assumption)

Application 2: streaming proof generation

A typical prover (e.g., for zk-Rollup):

- Collect statements $(x_1, w_1), \dots, (x_n, w_n)$ from the public (e.g., Tx)
- Prove a conjunction: $C(x_1, w_1) = \cdots = C(x_n, w_n) = 0$

The problem: need all n statements before can begin to build proof

Can we generate the proof in a streaming fashion?

• **<u>Goal</u>**: begin to generate proof as soon as (x_1, w_1) is available

Streaming proof generation: zk-Rollups

ZKP MOOC

Streaming proof generation: zk-Rollups

Application 3: Layer-3 zk-Rollups

First, a very brief review of Rollups

Rollup contract on layer-1 holds assets of all Rollup users, and Merkle root of layer-2

Rollup state (L2)

Layer-1 blockchain (L1)

Transfers inside Rollup are easy

ZKP MOOC

Transfers inside Rollup are easy

State transition proof π : proves that Tx batch is valid and that new root is correct

Transferring funds to and from Rollup

Alice sends funds to Rollup:

- Alice sends funds from her L1 address to the Rollup contract
- Rollup coordinator sends updated state root to L1 contract to record Alice's new balance

Alice withdraws funds from Rollup:

- Alice requests L1 Rollup contract to send her funds to an L1 address
- Rollup coordinator sends updated state root to L1 contract
- \Rightarrow Much more expensive than in-Rollup transfers

Running a dApps in a Rollup

Rollup coordinator computes updated state root, and state transition proof π

Running a dApps in a Rollup

Rollup coordinator computes updated state root, and proof π

One Rollup contract can support many L2's

Rollups run by different orgs: all must use the same rules for updating state root \Rightarrow same execution engine (e.g., EVM) for all L2 dApps

Layer-3 zk-Rollup

A gaming company runs an L2 Rollup:

- Wants a custom execution engine optimized for its games
- Wants a faster settlement rate than L2 → L1 settlement rate

What to do?

Run an L3 on top of its L2

 \Rightarrow requires <u>recursive</u> state transition proofs

Layer-3 zk-Rollup

Layer-3 zk-Rollup

Alice on L3: [send an NFT to a dApp L3], sig_A (dApp uses fancy EVM code)

Every second: L3 coordinator \rightarrow L2 coordinator:

new L3 state root and state transition proof π_3

L2 Rollup contract: check proof and record updated L3 state root

Every minute: L2 coordinator has 60 proofs from L3 coordinator

- Construct a single recursive proof π_2 that all 60 proofs from L3 are valid
- L2 coordinator \rightarrow L1 contract: latest L2 state root and the proof π_2
- L1 contract: check proof π_2 and record updated L2 state root

Application 4: Incrementally Verifiable Computation (IVC) [Valiant'08]

Consider a long computation done by iterating a function *F*:

Goal: succinct proof that prover has $\omega_1, ..., \omega_n$ s.t. final output s_n is correct The verifier has F and public values: n, s_0, s_n

IVC: construction

High level idea (informal):

- every step outputs a proof that the computation is correct to this point
- Specifically, for i = 1, ..., n, at step i prover outputs s_i and a proof π_i that proves prover has a witness $(s_{i-1}, \omega_i, \pi_{i-1})$ such that:

$$F(s_{i-1}, \omega_i) = s_i$$
 and $V(vp, (i-1, s_0, s_{i-1}), \pi_{i-1}) = yes$

⇒ final proof π_n is a succinct proof that prover has $\omega_1, ..., \omega_n$ s.t. final output s_n is correct

The statement at step number i (i > 0)

ZKP MOOC

Applications of IVC

1. Break a long computation into a sequence of small steps

F: one microprocessor step (Risc5, EVM, ...)

Prover needs far less memory per step compared to a monolithic proof

Applications of IVC

2. A succinct proof that current state of blockchain is correct

 s_0 : initial state of chain, s_n : current state of chain $\omega_1, \dots, \omega_n$: blocks of valid transactions

Used in Mina blockchain \Rightarrow verify state of chain by checking <u>one</u> recursive proof

3. Verifiable Delay Functions (VDF): succinct proof that s_n is equal to $H^{(n)}(s_0)$

$$s_0 \longrightarrow H \xrightarrow{S} H \xrightarrow{S} H \xrightarrow{S_3} \dots \xrightarrow{S_{n-2}} H \xrightarrow{S_{n-1}} H$$

Application 5: a market for ZK provers

Anyone with a GPU will be paid to create ZK proofs

market

selects provers and distributes rewards

Choosing Curves to Support Recursion

Two level SNARK recursion: proving knowledge of a proof

Review

Fix a circuit $C: \mathbb{F}_p^n \times \mathbb{F}_p^m \to \mathbb{F}_p$ and a statement $x \in \mathbb{F}_p^n$.

- To prove "I know w s.t. C(x, w) = 0" we use commitments to polys. in $\mathbb{F}_p[X]$
 - Prover commits to a polynomial that encodes the computation trace
- To commit to a polynomial $f \in \mathbb{F}_p[X]$ using KZG:
 - need a group \mathbb{G} of order p; a KZG commitment is a single element in \mathbb{G}

How is the group **G** represented?

Algebraic Groups

We say that \mathbb{G} is an <u>algebraic group defined over</u> \mathbb{F}_q if $\mathbb{G} \subseteq \mathbb{F}_q^{\ell}$ and

- the group operation can be computed by polynomials over F_q: there are polynomials (f₁,..., f_ℓ) ∈ F_q[X^ℓ] such that for all a, b ∈ G we have that a + b = (f₁(a, b), ..., f_ℓ(a, b)) ∈ G
- there is an efficient algorithm that test if $a, b \in \mathbb{G}$ satisfy a = b.

Example: G is the group of points of an elliptic curve defined over \mathbb{F}_q (G $\subseteq \mathbb{F}_q^3$)

The group has some order p (which is close to q)

Recursive proofs: the arithmetic problem

Let \mathbb{G} be an algebraic group of order p, defined over \mathbb{F}_q

 \Rightarrow The prover supports circuits over \mathbb{F}_p , but verifier needs \mathbb{F}_q for group ops.

What to do?

Option 1: field emulation

• Implement arithmetic in \mathbb{F}_q as a circuit over \mathbb{F}_p

ex: a pairing circuit (as in KZG eval) is huge

• The problem: blows up the size of verifier circuit \Rightarrow slow prover.

<u>Option 2</u>: find an algebraic group \mathbb{G} of order p, defined over \mathbb{F}_p

- Now both the prover and verifier use arithmetic in \mathbb{F}_p
- The bad news: the universe doesn't want us to have that ...
 ⇒ the discrete log problem is <u>always</u> easy in such groups

Solution: a chain of groups

Idea: find groups \mathbb{G}_1 and \mathbb{G}_2 such that

- \mathbb{G}_1 has order p, and is defined over \mathbb{F}_q
- \mathbb{G}_2 has order q, and is defined over \mathbb{F}_r

$$|\mathbb{G}_1| = p \quad \subseteq \quad \mathbb{F}_q^{\ell}$$

$$|\mathbb{G}_2| = q \quad \subseteq \quad \mathbb{F}_r^{\ell}$$

Now, to do a <u>two-level recursion</u>:

- Inner proof system (S, P, V) uses poly. commitments in \mathbb{G}_1
 - \Rightarrow Prover P supports circuits over \mathbb{F}_p , Verifier needs arithmetic in \mathbb{F}_q
- Outer proof system (S', P', V') uses poly. commitments in \mathbb{G}_2
 - \Rightarrow Prover P' supports circuits over \mathbb{F}_q , verifier needs arithmetic in \mathbb{F}_r

A longer chain of groups supports more levels of recursion

Even better: a cycles of groups [BCTV'14]

Find groups \mathbb{G}_1 and \mathbb{G}_2 such that

- \mathbb{G}_1 has order p, and is defined over \mathbb{F}_q
- \mathbb{G}_2 has order q, and is defined over \mathbb{F}_p

$$|\mathbb{G}_{1}| = p \subseteq \mathbb{F}_{q}^{\ell}$$
$$\mathbb{F}_{p}^{\ell} \supseteq |\mathbb{G}_{2}| = q$$

enables longer recursion by jumping back and forth between two proof systems

Recursion using a cycle [BCTV'14]

Three types of cycles of length two

Both G₁ and G₂ are "pairing" groups (both support KZG)
the bad news: best constructions result in inefficient groups

 \mathbb{G}_1 is a pairing group, but \mathbb{G}_2 is a regular group

• use KZG in \mathbb{G}_1 and a non-pairing PCS in \mathbb{G}_2 (e.g., bulletproofs)

Neither group is a pairing group: use a non-pairing PCS in bothThe pasta curves: pallas and vesta (next slide)

A large family of cycles of type-3

Let E/\mathbb{Q} be the elliptic curve: $y^2 = x^3 + d$ (for some d)

For "many" primes q, if $p = |E(\mathbb{F}_q)|$ is a prime then

$$|E(\mathbb{F}_p)| = q$$
 and $|E(\mathbb{F}_q)| = p$

Pasta uses d = 5 and both curves are convenient for recursion
Developed for Halo2

Silverman, Stange 2009: Corollary 22

Efficient Recursion via Statement Folding: Nova, Supernova, and generalizations

eprint.iacr.org/2021/370.pdf

(see also eprint.iacr.org/2020/1618.pdf)

The difficulty with full recursion

- Prover *P* needs to build a proof for a circuit *C* that runs the entire verification algorithm $V(vk, x, \pi)$.
 - Expensive: *V* needs to verify eval. proofs for a poly. commitment
- <u>Halo</u>: takes eval proof verification out of $C \Rightarrow$ simpler C
- Nova: takes (almost) all verification checks out of C
 ⇒ even simpler C

A folding scheme: compress two instances into one

Let $C: \mathbb{F}_p^n \times \mathbb{F}_p^m \to \mathbb{F}_p$ be a circuit A folding scheme for *C* is a protocol between two parties:

Complete: if $C(x_1, w_1) = C(x_2, w_2) = 0$ then C(x, w) = 0

Knowledge sound: $\forall P^* \exists E \text{ s.t. } \forall x_1, x_2: P^* \text{ outputs } \underline{\text{valid}} w \text{ for } x \Rightarrow E \text{ outputs } \underline{\text{valid}} w_1, w_2$

A folding scheme: compress two instances into one

Let $C: \mathbb{F}_p^n \times \mathbb{F}_p^m \to \mathbb{F}_p$ be a circuit A folding scheme for *C* is a protocol between two parties:

Recall: every circuit can be represented as a rank-1 constraint system (R1CS)

$$C: \mathbb{F}_p^n \times \mathbb{F}_p^m \to \mathbb{F}_p$$
(circuit C)
$$A, B, D \in \mathbb{F}_p^{u \times v}$$
(R1CS program)

$$(x, w') \in \mathbb{F}_p^{n+m}$$

simple
s.t. $C(x, w') = 0$ translation
$$(valid statement, witness pair)$$
$$z = (x, w) \in \mathbb{F}_p^u$$

s.t. $(Az) \circ (Bz) = Dz$
$$(x_1, x_2) \circ (y_1, y_2) = (x_1y_1, x_2y_2)$$

ZKP MOOC

A folding scheme for R1CS

A folding scheme: compress two instances into one

Example: fix an R1CS program $A, B, D \in \mathbb{F}_p^{u \times v}$ • instance 1: public $x_1 \in \mathbb{F}_p^n$, witness $z_1 = (x_1, w_1) \in \mathbb{F}_p^v$ • instance 2: public $x_2 \in \mathbb{F}_p^n$, witness $z_2 = (x_2, w_2) \in \mathbb{F}_p^v$

We know
$$(Az_i) \circ (Bz_i) = Dz_i$$
 for $i = 1,2$

ZKP MOOC

Folding the two instances into one

<u>Attempt 1</u>: verifier chooses $r \leftarrow \mathbb{F}_p$ and sets $x \leftarrow x_1 + r x_2$. prover sets $z \leftarrow z_1 + r z_2 = (x_1 + r x_2, w_1 + r w_2)$ Then: $(Az) \circ (Bz) = A(z_1 + r z_2) \circ B(z_1 + r z_2)$ $E \in \mathbb{F}_p^u$ $= (Az_1) \circ (Bz_1) + r^2 (Az_2) \circ (Bz_2) + r(Az_2) \circ (Bz_1) + r(Az_1) \circ (Bz_2)$ $= Dz_1 + r^2 Dz_2 + E$ \Rightarrow not quite an R1CS witness: we want $(Az) \circ (Bz) = Dz$

Let's try again: relaxed R1CS

Relaxed R1CS instance: $A, B, D \in \mathbb{F}_p^{u \times v}$, $(x \in \mathbb{F}_p^n, c \in \mathbb{F}_p, E \in \mathbb{F}_p^u)$ **Witness**: $z = (x, w) \in \mathbb{F}_p^v$ s.t. $(Az) \circ (Bz) = c(Dz) + E$

Now, again, fix a relaxed R1CS program $A, B, D \in \mathbb{F}_p^{u \times v}$

- instance 1: public (x_1, c_1, E_1) , witness $z_1 = (x_1, w_1) \in \mathbb{F}_p^{\nu}$
- instance 2: public (x_2, c_2, E_2) , witness $z_2 = (x_2, w_2) \in \mathbb{F}_p^v$

We know $(Az_i) \circ (Bz_i) = c_i(Dz_i) + E_i$ for i = 1,2

Folding the two relaxed R1CS instances into one

<u>Attempt 2</u>: step 1: Prover computes and send to V:

$$T \leftarrow (Az_2) \circ (Bz_1) + (Az_1) \circ (Bz_2) - c_1(Dz_2) - c_2(Dz_1)$$

(cross terms)

step 2: verifier chooses $r \leftarrow \mathbb{F}_p$, sends r to P, and sets $x \leftarrow x_1 + r x_2$, $c \leftarrow c_1 + r c_2$, $E \leftarrow E_1 + rT + r^2 E_2$

step 3: prover sets $z \leftarrow z_1 + r z_2 = (x_1 + r x_2, w_1 + r w_2)$

Why this is correct

$$(Az) \circ (Bz) =$$

- $= (Az_{1}) \circ (Bz_{1}) + r^{2} (Az_{2}) \circ (Bz_{2}) + r(Az_{2}) \circ (Bz_{1}) + r(Az_{1}) \circ (Bz_{2})$ $= c_{1}(Dz_{1}) + E_{1} + r^{2}c_{2}(Dz_{2}) + r^{2}E_{2} + r[(Az_{2}) \circ (Bz_{1}) + (Az_{1}) \circ (Bz_{2})]$ $= (c_{1}+rc_{2})(Dz_{1} + rDz_{2}) + E_{1} + r^{2}E_{2} + rT$ = c(Dz) + E
- \Rightarrow So, w is a valid witness for the relaxed R1CS instance (x, c, E)

Why is this knowledge sound? (informal)

For every folding prover P^* , there is an extractor *E* s.t.

- for all instances (x_1, c_1, E_1) and (x_2, c_2, E_2) ,
- if folding verifier outputs (x, c, E) and P^* outputs a <u>valid</u> w,

w.h.p, *E* extracts from P^* valid witnesses w_1, w_2 for the two instances

[note: also need to commit to *w* in the instance]

 \Rightarrow

eprint.iacr.org/2021/370.pdf (lemma 4)

Not good enough

In a relaxed R1CS the verifier has (x, c, E) ; prover has z.
The problem: E can be large (much larger than x)

Solution: **committed relaxed R1CS** • Verifier has $(x, c, commit(E, r_E))$; prover has (z, E, r_E) short commitment to E

Commitment needs to be "additive" to enable folding

Recall: homomorphic commitment scheme

Two algorithms:

- $commit(m, r_m) \rightarrow com$ $m \in \mathcal{M}, r_m \leftarrow \mathcal{R}, com \in \mathcal{C}$
- *verify*(m, *com*, r_m) \rightarrow accept or reject

Properties: (informal)

- binding: cannot produce com and two valid openings for com
- hiding: com reveals nothing about committed data

Recall: homomorphic commitment scheme

Suppose $\mathcal{M} = \mathbb{F}^n$, $\mathcal{R} = \mathbb{F}$, and \mathcal{C} is an additive group

• The commitment scheme is **homomorphic** if for all m_1, m_2, r_1, r_2 :

 $commit(m_1, r_1) + commit(m_2, r_2) = commit(m_1 + m_2, r_1 + r_2)$

• The commitment scheme is <u>succinct</u> if commitment size is $O_{\lambda}(1)$

Many examples: Pedersen, lattice-based, ...

Folding scheme for committed relaxed R1CS

Instance:
$$A, B, D \in \mathbb{F}_p^{u \times v}$$
, $(x \in \mathbb{F}_p^n, c \in \mathbb{F}_p, com_E \in \mathbb{F}_p^u)$

Witness: (z, E, r_E) s.t. $(Az) \circ (Bz) = c(Dz) + E$ and $com_E = commit(E, r_E)$

As usual, fix an R1CS program $A, B, D \in \mathbb{F}_p^{u \times v}$

- instance 1: public (x_1, c_1, com_{E_1}) , witness (z_1, E_1, r_{E_1})
- instance 2: public (x_2, c_2, com_{E_2}) , witness (z_2, E_2, r_{E_2})

Folding scheme for committed relaxed R1CS

\$

Prover computes

$$T \leftarrow (Az_2) \circ (Bz_1) + (Az_1) \circ (Bz_2) - c_1(Dz_2) - c_2(Dz_1)$$

sends $com_T \leftarrow commit(T, r_T)$ to V.

• Verifier chooses $r \stackrel{s}{\leftarrow} \mathbb{F}_p$, sends r to P, and sets $x \leftarrow x_1 + r x_2$, $c \leftarrow c_1 + r c_2$, $\operatorname{com}_E \leftarrow com_{E_1} + r \cdot com_T + r^2 \cdot com_{E_2}$

Prover sets

$$z \leftarrow z_1 + r z_2$$
, $E \leftarrow E_1 + rT + r^2 E_2$, $r_E \leftarrow r_{E_1} + r \cdot r_T + r^2 \cdot r_{E_2}$

homomorphic commitment

Folding scheme for committed relaxed R1CS

Prover computes

ZKP MOOC

Benefit of folding over SNARK recursion: no need to run the verifier's circuit in SNARK prover

IVC is a sequence of valid (instance-witness) pairs:

x_1, c_1, com_{E_1}	x_2, c_2, com_{E_2}	$x_{3}, c_{3}, com_{E_{3}}$	x_4 , c_4 , com_{E_4}
w_1, E_1, r_{E_1}	w_2, E_2, r_{E_2}	w_3, E_3, r_{E_3}	w_4, E_4, r_{E_4}

IVC is a sequence of valid (instance-witness) pairs:

fold 1st and 2nd
instances $x_{12}, c_{12}, com_{E_{12}}$ x_3, c_3, com_{E_3} x_4, c_4, com_{E_4} $w_{12}, E_{12}, r_{E_{12}}$ w_3, E_3, r_{E_3} w_4, E_4, r_{E_4}

ZKP MOOC

IVC is a sequence of valid (instance-witness) pairs:

fold 3rd instance into first two

$$x_{13}, c_{13}, com_{E_{13}}$$

 $w_{13}, E_{13}, r_{E_{13}}$

 x_4, c_4, com_{E_4} w_4, E_4, r_{E_4}

IVC is a sequence of valid (instance-witness) pairs:

fold 4th instance into first three

 $x_{14}, c_{14}, com_{E_{14}}$ $w_{14}, E_{14}, r_{E_{14}}$

ZKP MOOC

The key point ...

After all the superfast folding is done:

• Verifier has instance $(x_{14}, c_{14}, c_{014}, c_{014})$.

```
m{x_{14}}, c_{14}, com_{E_{14}} \ w_{14}, E_{14}, r_{E_{14}}
```

• Prover needs to prove that $(w_{14}, E_{14}, r_{E_{14}})$ is a valid witness

Use whatever proof system to prove that this single pair is valid

Note: for a proving marketplace, fold in a <u>tree structure</u> so that folding can be carried out in parallel by different parties.

Unfortunately ... not so simple

To make this non-interactive: use Fiat-Shamir

• Folding the first pair: prover does $r_{13} \leftarrow H(x_{12}, x_3, \text{com}_{T_{13}}, ...)$ and

 $\mathbf{x_{13}} \leftarrow \mathbf{x_{12}} + r_{13}\mathbf{x_3}$, $c_{13} \leftarrow c_{12} + r_{13}$, $com_{E_{13}} \leftarrow com_{E_{12}} + r_{13}com_{T_{13}}$

- \Rightarrow prover needs to prove that folding was done correctly
 - Needs to prove that it used the correct $r_{13} \in \mathbb{F}_p$ (otherwise not sound)

Also need to link all instances: output of step i is input of step i + 1

Unfortunately ... not so simple

How? Augment R1CS (A,B,D) to also check folding.

Augmented R1CS program to (A', B', D'): [details omitted]

- takes a hash of three (A', B', D') instances as input: instance x_i , accumulated instance $x_{1 \rightarrow i}$, folded instance $x_{1 \rightarrow i+1}$
- Verify that given witness is valid for instance x_i with respect to (A, B, D)
- Run folding alg. to verify that $x_{1 \rightarrow i+1}$ is the correct folding of $x_{1 \rightarrow i}$ and x_i two multiplications in G

Prover's work at each step

At each folding step:

prover manipulates a witness for an R1CS program that does

(i) evaluate *F*, (ii) do two multiplications in **G**

(iii) do some simple hashing.

 \Rightarrow much faster than proving a SNARK verification circuit for F

Supernova

Nova: repeated application of the same function *F* (same relaxed R1CS program)

Supernova:

- supports F_1, \ldots, F_k in chain (each one may appear multiple times)
- How? apply Nova to each set of F_i separately

Nova's folding scheme applies to any <u>quadratic</u> constraint system

Sangria: a folding technique for Plonk arithmetization ⇒ an efficient IVC using Plonk arithmetization

END OF LECTURE

This completes the part of the course on efficient SNARK constructions

Credit: Faithie/Shutterstock