Zero Knowledge Proofs

ZKP Applications Overview & zkBridge, Trustless Bridge Made Practical

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

<u>zkBridge: Trustless</u> Bridge Made Practical

Cross-chain Bridges

- Multi-chain Universe
- Bridge: generic and efficient communication cross blockchains
- Desirable properties
 - Generality (support many applications)
 - Efficient
 - Secure with trust minimization (particularly crucial)

Current Common Bridge Approach: Trust Intermediary

Sender chain C-

Existing Approach: intermediary

- Side chain (PolyNetwork, Axelar)
- Committee (Wormhole, Ronin)
- Oracles (LayerZero)

Trust Assumptions

- 2/3 honest nodes
- 2/3 honest committee
- independence between Oracle and Relayer

Pros: Simple & efficient on-chain verification (e.g., multisig) Cons: Need to rely on external trust on intermediaries

Over \$2B Lost in Cross-chain Bridge Attacks in last 18 months

Bridge Protocol	Hacked Time	Total Loss	
BSC Bridge	2022-10	\$568M	
Nomad	2022-08	\$200M	
Harmony	2022-06	\$100M	
Ronin	2022-03	\$600M	
Wormhole (Solana)	2022-02	\$325M	Cause: Private Key
PolyNetwork	2021-08	\$600M	Leakage

Remove Trust on Intermediary

- Light client verification:
 - Verifying certain correctness properties of state transition in consensus protocol
 - E.g., for BFT-based consensus, a light client needs to verify validator signatures and keeps track of validator rotation
- Cosmos IBC
 - Validators verifies block header information of another chain, performing light client verification
 - Cons: require each chain to implement IBC client to perform the verification
- NEAR Rainbow bridge
 - Implement light client verification as a smart contract in Ethereum
 - Cons: on-chain verification is very expensive

zkBridge—Trustless Bridge Made Practical

With ZKP, we replace honesty assumptions with Cryptographic assurance

• Efficient on-chain verification using ZKP

Xie-Zhang-Cheng-Zhang-Zhang-Jia-Boneh-Song, "zkBridge: trustless bridge made practical", ACM CCS 2022 (zkbridge.org)

zkBridge—Trustless Bridge Made Practical

- π: proving h_{t+1} is correct given h_t (and other info)
 (consensus-specific light client verification) with SNARKs
- E.g., "∃ sigs by a majority of C₁ committee on h_{t+1}"

Xie-Zhang-Cheng-Zhang-Zhang-Jia-Boneh-Song, "zkBridge: trustless bridge made practical", ACM CCS 2022 (zkbridge.org)

Advantages of zkBridge (zkbridge.org)

- Minimized trust
 - Cryptographic soundness instead of honest assumptions
- Efficient on-chain verification
 - purpose-built zkSNARK enables efficient on-chain verification
- Permissionless and Decentralized
 - Provers are not trusted so anyone can join
- Extensible and Universal
 - Developers can develop their own application on top

Challenges

- SNARKs are expensive
- Blockchains are not designed to be "ZK friendly"
 - EdDSA digital signature is expensive to express as an arithmetic circuit (~2M gates)
 h_t, h
- Each state transition can involve hundreds of sig v
- => Computing π naively can be prohibitively expension

Making zkBridge practical

- deVirgo: a distributed version of Virgo
 - Exploits "data parallelism"
 - Optimal parallelization ---- 100x speedup with 128 machines
 - Practical communication ---- less than 20% of proving time
- Reducing proof size by recursion
 - run deVirgo verifier in Groth16
- Batching

deVirgo: **fast** proof generation, **relatively big** proof

Groth16: **slower** proof generation,

constant proof & verification.

Constant size proofs & verification with only a slight increase in prover time

(IEEE S&P 2020)

Approach: deVirgo & 2-layer Proof Composition

ZKP MOOC

Performance of zkBridge proofs

	Proof Gen. Time (seconds)		Proof Gen. Comm. (GB)		Proof Size (Bytes)		On-chain Ver. Cost (gas)		
# of sigs	deVirgo	RV	total	total	per-machine	w/o RV	w/ RV	w/o RV	w/ RV
8	12.52	4.90	17.42	7.34	0.92	1946476	131	78M	221K
32	12.80	5.41	18.21	32.24	1.01	1952492	131	78M	221K
128	13.28	5.49	18.77	131.89	1.03	1958508	131	79M	221K

Table 2: Evaluation results. RV is the shorthand for recursive verification.

More results in paper: <u>https://zkbridge.org</u>.

Extensibility of zkBridge

Extensibility & Applications

zkBridge has great extensibility

Developers can build application contracts to achieve more advanced functionalities such as:

1. Message Passing

2. Cross-chain Assets Transfer/Swap

3. cross-chain NFT Interoperations

Application Layer Components

Application Layer Use Case 1: Message Passing

ZKP MOOC

Application Layer Use Case 1: Message Passing

Defense-in-Depth

- Base layer of zkBridge presents a unified interface for syncing block header from another chain
- Improving security with defense-in-depth
 - Combining multiple implementations: proof-diversity, nversion programming, combining with other approaches such as optimistic solutions
 - Design different policies for combining different implementations
 - E.g., Hashi (https://github.com/gnosis/hashi): an EVM Header Oracle Aggregator

zkBridge: trustless bridge made practical

- Minimized trust
- Efficient on-chain verification
- Efficient proof generation
- Permissionless & decentralized by design
- Extensible and universal
- To learn more: <u>https://zkbridge.org</u>, <u>https://rdi.berkeley.edu/research</u>

 <u>Tiancheng Xie</u>, <u>Jiaheng Zhang</u>, <u>Zerui Cheng</u>, <u>Fan Zhang</u>, <u>Yupeng Zhang</u>, <u>Yongzheng Jia</u>, <u>Dan</u> <u>Boneh</u>, <u>Dawn Song</u>, "zkBridge: trustless bridge made practical", ACM CCS 2022

zkBridge Technology Enables Other Capabilities

- State proof
 - A cryptographic proof of state changes that occur in a given set of blocks (e.g., Algorand State Proof)
- zk-based light client verification
 - Support efficient light client verification, including mobile use case (e.g., Celo Plumo)
- zkBridge can be extended to privacy chains with privacy protection

zkBridge Track in ZKP/Web3 Hackathon

ZKP MOOC